The Hamilton-Jacobi-Bellman (HJB) equation is a
nonlinear partial differential equation
In mathematics and physics, a nonlinear partial differential equation is a partial differential equation with nonlinear system, nonlinear terms. They describe many different physical systems, ranging from gravitation to fluid dynamics, and have b ...
that provides
necessary and sufficient condition
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
s for
optimality of a
control with respect to a
loss function
In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost ...
. Its solution is the
value function The value function of an optimization problem gives the value attained by the objective function at a solution, while only depending on the parameters of the problem. In a controlled dynamical system, the value function represents the optimal payo ...
of the optimal control problem which, once known, can be used to obtain the optimal control by taking the maximizer (or minimizer) of the
Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
involved in the HJB equation.
The equation is a result of the theory of
dynamic programming which was pioneered in the 1950s by
Richard Bellman
Richard Ernest Bellman (August 26, 1920 – March 19, 1984) was an American applied mathematician, who introduced dynamic programming in 1953, and made important contributions in other fields of mathematics, such as biomathematics. He foun ...
and coworkers. The connection to the
Hamilton–Jacobi equation
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mecha ...
from
classical physics
Classical physics refers to physics theories that are non-quantum or both non-quantum and non-relativistic, depending on the context. In historical discussions, ''classical physics'' refers to pre-1900 physics, while '' modern physics'' refers to ...
was first drawn by
Rudolf Kálmán. In
discrete-time
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled.
Discrete time
Discrete time views values of variables as occurring at distinct, separate "poi ...
problems, the analogous
difference equation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
is usually referred to as the
Bellman equation
A Bellman equation, named after Richard E. Bellman, is a necessary condition for optimality associated with the mathematical Optimization (mathematics), optimization method known as dynamic programming. It writes the "value" of a decision problem ...
.
While classical
variational problems, such as the
brachistochrone problem
In physics and mathematics, a brachistochrone curve (), or curve of fastest descent, is the one lying on the plane between a point ''A'' and a lower point ''B'', where ''B'' is not directly below ''A'', on which a bead slides frictionlessly under ...
, can be solved using the Hamilton–Jacobi–Bellman equation, the method can be applied to a broader spectrum of problems. Further it can be generalized to
stochastic Stochastic (; ) is the property of being well-described by a random probability distribution. ''Stochasticity'' and ''randomness'' are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; i ...
systems, in which case the HJB equation is a second-order
elliptic partial differential equation
In mathematics, an elliptic partial differential equation is a type of partial differential equation (PDE). In mathematical modeling, elliptic PDEs are frequently used to model steady states, unlike parabolic PDE and hyperbolic PDE which gene ...
. A major drawback, however, is that the HJB equation admits classical solutions only for a
sufficiently smooth value function, which is not guaranteed in most situations. Instead, the notion of a
viscosity solution is required, in which conventional derivatives are replaced by (set-valued)
subderivative
In mathematics, the subderivative (or subgradient) generalizes the derivative to convex functions which are not necessarily differentiable. The set of subderivatives at a point is called the subdifferential at that point. Subderivatives arise in c ...
s.
Optimal Control Problems
Consider the following problem in deterministic optimal control over the time period