Gunshot Residue
   HOME

TheInfoList



OR:

Gunshot residue (GSR), also known as cartridge discharge residue (CDR), gunfire residue (GFR), or firearm discharge residue (FDR), consists of all of the particles that are expelled from the muzzle of a gun following the discharge of a bullet. It is principally composed of burnt and unburnt particles from the explosive primer, the
propellant A propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicle ...
(gunpowder), stabilisers and other additives. The act of firing a
bullet A bullet is a kinetic projectile, a component of firearm ammunition that is shot from a gun barrel. They are made of a variety of materials, such as copper, lead, steel, polymer, rubber and even wax; and are made in various shapes and constru ...
incites a highly pressurised, explosive reaction that is contained within the barrel of the firearm, which expels the bullet. This can cause the bullet, the barrel, or the cartridge to become damaged, meaning gunshot residue may also include metallic particles from the cartridge casing, the bullet jacket, as well as any other dirt or residue contained within the barrel that could have become dislodged. Law enforcement commonly use swabbing, adhesives and vacuums with very fine filters to collect GSR. They commonly swab the web of the non-firing hand to look for gunshot residue if they are suspected to have discharged a firearm themselves or were in close contact with one at the time of discharge. Hair and clothing also accumulate GSR; typically a double-sided adhesive is used to sample areas that may have been exposed to such residue. It is also possible to use a swab moistened with 5%
nitric acid Nitric acid is an inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into nitrogen oxide, oxides of nitrogen. Most com ...
for collection. To determine if GSR is present in an area, presumptive tests, such as the modified Griess test and the sodium rhodizonate test, are performed. Any presumptive GSR samples are collected for confirmatory testing using instruments such as Scanning electron microscopy dispersive X-ray spectrometry ( SEM-EDX) Flame or Graphite Furnace Atomic Absorption Spectrometry. There are both inorganic and organic components in GSR. Organic GSR (OGSR) consists of organic compounds such as
nitroglycerin Nitroglycerin (NG) (alternative spelling nitroglycerine), also known as trinitroglycerol (TNG), nitro, glyceryl trinitrate (GTN), or 1,2,3-trinitroxypropane, is a dense, colorless or pale yellow, oily, explosive liquid most commonly produced by ...
e. Organic compounds can originate from the primer, propellants, lubricants or other additives used by manufacturers. Analysis of OGSR is not done with the same instrumentation as stated above, instead techniques like Gas Chromatography-Mass Spectrometry are used.


History

The detection of nitrates and nitrites for GSR has been around since the early 1900s. The first recorded use of paraffin wax as a lifting medium was done by Dr. Iturrioz in 1914 and was popularized in 1933 by Teodoro Gonzalez of the Mexico City Police Laboratory. The aptly named paraffin test is also referred to as the diphenylamine test, dermal nitrate test and the Gonzalez test. This test consisted of coating a suspect's hands with
paraffin wax Paraffin wax (or petroleum wax) is a soft colorless solid derived from petroleum, coal, or oil shale that consists of a mixture of hydrocarbon molecules containing between 20 and 40 carbon atoms. It is solid at room temperature and melting poi ...
, allowing it to solidify and peeling it away before adding a
diphenylamine Diphenylamine is an organic compound with the formula (C6H5)2NH. The compound is a derivative of aniline, consisting of an amine bound to two phenyl groups. The compound is a colorless solid, but commercial samples are often yellow due to oxidiz ...
/
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
reagent. The presence of dark blue spots is said to indicate a positive result. This is no longer used in casework due to the high number of false positives caused by the commonality of nitrates and nitrites in a variety of mundane products such as fertilisers. In 1971 John Boehm presented some
micrographs A micrograph is an image, captured photographically or digitally, taken through a microscope or similar device to show a magnify, magnified image of an object. This is opposed to a macrograph or photomacrograph, an image which is also taken ...
of gunshot residue particles found during the examination of bullet entrance holes using a
scanning electron microscope A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that ...
. If the scanning electron microscope is equipped with an energy-dispersive X-ray spectroscopy detector, the
chemical elements A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in i ...
present in such particles, mainly
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
,
antimony Antimony is a chemical element; it has chemical symbol, symbol Sb () and atomic number 51. A lustrous grey metal or metalloid, it is found in nature mainly as the sulfide mineral stibnite (). Antimony compounds have been known since ancient t ...
and
barium Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
, can be identified. In 1979 Wolten et al. proposed a classification of gunshot residue based on composition,
morphology Morphology, from the Greek and meaning "study of shape", may refer to: Disciplines *Morphology (archaeology), study of the shapes or forms of artifacts *Morphology (astronomy), study of the shape of astronomical objects such as nebulae, galaxies, ...
, and size. Four compositions were considered ''characteristic'': *
Lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
,
antimony Antimony is a chemical element; it has chemical symbol, symbol Sb () and atomic number 51. A lustrous grey metal or metalloid, it is found in nature mainly as the sulfide mineral stibnite (). Antimony compounds have been known since ancient t ...
, and
barium Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
* Barium,
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
, and
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
* Antimony * Barium The authors proposed some rules about chemical elements that could also be present in these particles. Wallace and McQuillan published a new classification of the gunshot residue particles in 1984. They labeled as ''unique'' particles those that contain lead, antimony, and barium, or that contain antimony and barium. Wallace and McQuillan also maintained that these particles could contain only some chemical elements.


Current practice

The most definitive method to determine whether a particle is characteristic of GSR is by its elemental profile. GSR mostly derives from its
propellant A propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicle ...
s and primer cap; which includes an
explosive An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An ex ...
, oxidizer, fuel, lubricants, stabilizers and other additives. An approach to the identification of particles characteristic of or consistent with GSR is to compare the elemental profile of the recovered particulate with that collected from case-specific known source items, such as the recovered
weapon A weapon, arm, or armament is any implement or device that is used to deter, threaten, inflict physical damage, harm, or kill. Weapons are used to increase the efficacy and efficiency of activities such as hunting, crime (e.g., murder), law ...
, Cartridge cases or victim-related items whenever necessary. This approach was called ‘‘case by case’’ by Romolo and Margot in an article published in 2001. In 2010 Dalby et al. published the latest review on the subject and concluded that the adoption of a "case by case" approach to GSR analysis must be seen as preferable, in agreement with Romolo and Margot. In light of similar particles produced from extraneous sources, both Mosher et al. (1998) Grima et al. (2012) presented evidence of pyrotechnic particles that can be mistakenly identified as GSR. Both publications highlight that certain markers of exclusion and reference to the general population of collected particulate can help the expert in designating GSR-similar particles as
firework Fireworks are Explosive, low explosive Pyrotechnics, pyrotechnic devices used for aesthetic and entertainment purposes. They are most commonly used in fireworks displays (also called a fireworks show or pyrotechnics), combining a large numbe ...
-sourced. Particle analysis by scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy detector is the most powerful
forensic Forensic science combines principles of law and science to investigate criminal activity. Through crime scene investigations and laboratory analysis, forensic scientists are able to link suspects to evidence. An example is determining the time and ...
tool that investigators can use to determine a subject's proximity to a discharging firearm or contact with a surface exposed to GSR (firearm, spent cartridge case, target hole). Test accuracy requires procedures that avoid secondary gunshot residue transfer from police officers onto subjects or items to be tested, and that avoid
contamination Contamination is the presence of a constituent, impurity, or some other undesirable element that renders something unsuitable, unfit or harmful for the physical body, natural environment, workplace, etc. Types of contamination Within the scien ...
in the laboratory. The two main groups of specialists currently active on gunshot residue analysis are the Scientific Working Group for Gunshot Residue (SWGGSR) based in USA and the ENFSI EWG Firearms/GSR Working Group based in Europe.


SEM-EDX results

A positive result using SEM-EDX spectroscopy will generate x-ray spectra characteristic of GSR, likely containing combinations of metals such as Pb- Sb- Ba or Sb-Ba. Spectra may also indicate the presence of Ca, S and Si but is not always indicative of GSR. GSR may be present when an individual discharged a firearm or was close by when a discharge occurred. GSR has been observed to undergo both secondary and tertiary transfers, meaning the presence of GSR may be attributed to the persistence of the residue and the unpredictability of human interaction. A negative result on someone could mean they were near it but not close enough for gunshot residue to land on them, or it can mean that the gunshot residue deposited on them wore off. Gunshot residue can also be removed from surfaces by washing, wiping, or brushing it off, so a negative result cannot fully rule out a gun was not fired by the tested object or area. Expelled gunshot residue does not travel very far from the muzzle because the particles lack momentum. Depending on the type of fire arm and ammunition used, it will typically travel no farther than 3–5 feet (0.9–1.5 meters) from the muzzle of the gun.


Matching gunshot residue to a specific source

If the ammunition used was specifically tagged in some way by special elements, it is possible to know the cartridge used to produce the gunshot residue. Inference about the source of gunshot residue can be based on the examination of the particles found on a suspect and the population of particles found on the victim, in the firearm or in the cartridge case, as suggested by the ASTM Standard Guide for gunshot residue analysis by scanning electron microscopy/energy dispersive X-ray spectrometry. Advanced analytical techniques such as ion beam analysis (IBA), carried out after scanning electron microscopy, can support further information allowing one to infer about the source of gunshot residue particles. Christopher et al. showed as the grouping behaviour of different makes of ammunition can be determined using multivariate analysis. Bullets can be matched back to a gun using comparative ballistics.


Organic gunshot residue

The abbreviation OGSR is often used to distinguish the organic residues found after a discharge. Organic residues can come from propellants like
nitrocellulose Nitrocellulose (also known as cellulose nitrate, flash paper, flash cotton, guncotton, pyroxylin and flash string, depending on form) is a highly flammable compound formed by nitrating cellulose through exposure to a mixture of nitric acid and ...
and
trinitrotoluene Troponin T (shortened TnT or TropT) is a part of the troponin complex, which are proteins integral to the contraction of skeletal and heart muscles. They are expressed in skeletal and cardiac myocytes. Troponin T binds to tropomyosin and help ...
, plasticisers like triacetin, stabilizers like
diphenylamine Diphenylamine is an organic compound with the formula (C6H5)2NH. The compound is a derivative of aniline, consisting of an amine bound to two phenyl groups. The compound is a colorless solid, but commercial samples are often yellow due to oxidiz ...
and possible reaction products of said compounds. The persistence of these residues is quite low compared to inorganic GSR, with very little quantities of carryover (if any). Detection of OGSR becomes difficult a mere hour after the firing. The persistence of OGSR is subject to environmental factors like wind as well as the substrate it clings to. Organic gunshot residue can be analyzed using methods such as micellar electrokinetic
capillary electrophoresis Capillary electrophoresis (CE) is a family of electrokinetic separation methods performed in submillimeter diameter capillaries and in micro- and nanofluidic channels. Very often, CE refers to capillary zone electrophoresis (CZE), but other electr ...
(MEKC),
high-performance liquid chromatography High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify specific components in mixtures. The mixtures can origin ...
and gas chromatography-mass spectrometry.


Presumptive tests

Presumptive testing always precedes analysis of a questioned sample. Most presumptive tests involve a chemical reaction that results in a colour change that is detectable with the plain eye. It is important to note that thorough documentation of the scene through notes, photographs etc. must be done prior to any presumptive or confirmatory testing in order to maintain chain of custody and avoid contamination. The Griess test and Walker test are two presumptive tests that can be used to determine if a questioned sample contains nitrites. The Walker test is used to determine GSR area on clothing using naphthylamine-
sulfanilic acid Sulfanilic acid (4-aminobenzenesulfonic acid) is an organic compound with the formula H3NC6H4SO3. It is an off-white solid. It is a zwitterion, which explains its high melting point. It is a common building block in organic chemistry."Sulphanili ...
soaked photograph paper. Red colouration appears when nitrite ions are present. A variant of the Griess test reagent is
sulfanilamide Sulfanilamide (also spelled sulphanilamide) is a sulfonamide antibacterial drug. Chemically, it is an organic compound consisting of an aniline derivatized with a sulfonamide group. Powdered sulfanilamide was used by the Allies in World War ...
and naphthylamine in an acidic medium. The Modified Griess test detects nitrite compounds, which are a by-product of the combustion of gunpowder. Forensic examiners use this test to determine the gun to target distance. This test is performed first because it does not interfere with the later sodium rhodizonate test. The presence of nitrite ions is what triggers the colour change, and therefore we do not consider this test to be indicative of GSR. The sodium rhodizonate test can detect the presence of lead and barium; it results in a red or purple color when lead is present in the tested area, and a reddish-brown colour when exposed to barium. It is an extremely sensitive, specific, and efficient method as it can obtain information on the origin of particulate debris, and it can be done on surfaces or objects.Bashinski, J.V., The Evaluation of Gunshot Residue Patterns, the Rhodizonate Test for Lead, 1974, University of California, Berkeley. This test can't determine the precise distance of gun to target, however, it is often used around holes to determine if it is consistent with the passage of a bullet. The Harrison and Gilroy method was introduced in 1959. It is a colorimetric test used to verify the presence of antimony, lead and/or barium. The test involves dampening a cloth with 0.1M
hydrochloric acid Hydrochloric acid, also known as muriatic acid or spirits of salt, is an aqueous solution of hydrogen chloride (HCl). It is a colorless solution with a distinctive pungency, pungent smell. It is classified as a acid strength, strong acid. It is ...
(HCl), swabbing the item being analysed and allowing that to dry before subjecting it to various reagents. The sensitivities of the reagents used makes this test very unreliable and unrealistic for crime scene analysis.


See also

* Blowback, material drawn into the barrel of a firearm post discharge


Notes


References


Further Information

* ASTM E1588-10e1, Standard Guide for GSR analysis by Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry, American Society for Testing and Materials, West Conshohocken, PA, 2010. * E. Boehm, Application of the SEM in forensic medicine, Scanning Electron Microscopy (1971) 553–560. * M Christopher, J Warmenhoven, FS Romolo, M Donghi, R Webb, C Jeynes, NI Ward, A New Quantitative Method for Gunshot Residue Analysis by Ion Beam Analysis. Analyst, 2013, 138, 4649. * O. Dalby, D. Butler, J.W. Birkett, Analysis of Gunshot Residue and Associated Materials—A Review, J. Forens. Sci. 55 (2010) 924–943. * M. Grima, M. Butler, R. Hanson, A. Mohameden, Firework displays as sources of particles similar to gunshot residue, Science and Justice 52 (1) (2012) 49–57. * H.H. Meng, B. Caddy, Gunshot residue analysis - review, J. Forens. Sci. 42 (1997) 553–570. * P.V. Mosher, M.J. McVicar, E.D. Randall, E.H. Sild, Gunshot residue-similar particles produced by fireworks, Journal of the Canadian Society of Forens. Sci. 31 (3)(1998) 157–168. * F.S. Romolo, M.E. Christopher, M. Donghi, L. Ripani, C. Jeynes, R.P. Webb, N.I. Ward, Integrated Ion Beam Analysis (IBA) in Gunshot Residue (GSR) characterisation. Forensic Sci. Int. 231 (2013), 219–228. * F.S. Romolo. Advances in Analysis of Gunshot Residue. In Emerging Technologies for the analysis of forensic traces, Edited by Simona Francese, Springer Publishing Company, pagine 183–202, ISBN 978-3-030-20541-6. * A.J. Schwoeble, D.L. Exline, Current Methods in Forensic Gunshot Residue Analysis, (2000) CRC Press LLC. * J.S. Wallace, J. McQuillan, Discharge residues from cartridge-operated industrial tools, J. Forens. Sci. Soc. 24 (1984) 495–508. * J.S. Wallace, Chemical Analysis of Firearms, Ammunition, and Gunshot Residue, (2008) CRC Press LLC. * G.M. Wolten, R.S. Nesbitt, A.R. Calloway, G.L. Loper, P.F. Jones, Particle analysis for the detection of gunshot residue. I: Scanning electron microscopy/energy dispersive X-ray characterisation of hand deposits from firing, J. Forens. Sci. 24 (1979) 409–422. * G.M. Wolten, R.S. Nesbitt, A.R. Calloway, G.L. Loper, Particle analysis for the detection of gunshot residue. II: occupational and environmental particles, J. Forens. Sci. 24 (1979) 423–430. * G.M. Wolten, R.S. Nesbitt, A.R. Calloway, Particle analysis for the detection of gunshot residue. III: the case record, J. Forens. Sci. 24 (1979) 864–869.


External links

* ''
New Scientist ''New Scientist'' is a popular science magazine covering all aspects of science and technology. Based in London, it publishes weekly English-language editions in the United Kingdom, the United States and Australia. An editorially separate organ ...
'', 23 November 2005
"Why we cannot rely on firearm forensics"

Archived copy
* Scientific Working Group for Gunshot Residue (SWGGSR) http://www.swggsr.org/ * ENFSI EWG Firearms/GSR Working Group http://www.enfsi.eu/about-enfsi/structure/working-groups/firearms-and-gsr * Gunshot Powder Residue Test http://www.meditests.com/gun-powder-test.html {{DEFAULTSORT:Gunshot Residue Forensic evidence Gun violence