Glycosyltransferase
   HOME

TheInfoList



OR:

Glycosyltransferases (GTFs, Gtfs) are
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s ( EC 2.4) that establish natural glycosidic linkages. They
catalyze Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
the transfer of
saccharide A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' m ...
moieties from an activated nucleotide sugar (also known as the "
glycosyl donor A glycosyl donor is a carbohydrate mono- or oligosaccharide that will react with a suitable glycosyl acceptor to form a new glycosidic bond. By convention, the donor is the member of this pair that contains the resulting anomeric carbon of the new g ...
") to a nucleophilic glycosyl acceptor molecule, the nucleophile of which can be
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
-
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
-,
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
-, or
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
-based. The result of glycosyl transfer can be a
carbohydrate A carbohydrate () is a biomolecule composed of carbon (C), hydrogen (H), and oxygen (O) atoms. The typical hydrogen-to-oxygen atomic ratio is 2:1, analogous to that of water, and is represented by the empirical formula (where ''m'' and ''n'' ...
,
glycoside In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. ...
,
oligosaccharide An oligosaccharide (; ) is a carbohydrate, saccharide polymer containing a small number (typically three to ten) of monosaccharides (simple sugars). Oligosaccharides can have many functions including Cell–cell recognition, cell recognition and ce ...
, or a
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long-chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with wat ...
. Some glycosyltransferases catalyse transfer to inorganic phosphate or
water Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
. Glycosyl transfer can also occur to
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
residues, usually to
tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a conditionally essential amino acid with a polar side group. The word "tyrosine" is ...
,
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − ...
, or
threonine Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form when dissolved in water), a carboxyl group (which is in the deprotonated −COO− ...
to give O-linked
glycoprotein Glycoproteins are proteins which contain oligosaccharide (sugar) chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known a ...
s, or to
asparagine Asparagine (symbol Asn or N) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
to give N-linked glycoproteins. Mannosyl groups may be transferred to
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromat ...
to generate C-mannosyl tryptophan, which is relatively abundant in eukaryotes. Transferases may also use
lipids Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins Vitamin A, A, Vitamin D, D, Vitamin E, E and Vitamin K, K), monoglycerides, diglycerides, phospholipids, and others. The fu ...
as an acceptor, forming glycolipids, and even use lipid-linked sugar phosphate donors, such as dolichol phosphates in eukaryotic organism, or
undecaprenyl phosphate Undecaprenyl phosphate (UP), also known lipid-P, bactoprenol and C55-P., is a molecule with the primary function of trafficking polysaccharides across the cell membrane, largely contributing to the overall structure of the cell wall in Gram-posit ...
in bacteria. Glycosyltransferases that use sugar nucleotide donors are Leloir enzymes, after Luis F. Leloir, the scientist who discovered the first sugar nucleotide and who received the 1970
Nobel Prize in Chemistry The Nobel Prize in Chemistry () is awarded annually by the Royal Swedish Academy of Sciences to scientists in the various fields of chemistry. It is one of the five Nobel Prizes established by the will of Alfred Nobel in 1895, awarded for outst ...
for his work on carbohydrate metabolism. Glycosyltransferases that use non-nucleotide donors such as dolichol or polyprenol
pyrophosphate In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate () and tetrasodium pyrophosphate (), among others. Often pyrophosphates a ...
are non-Leloir glycosyltransferases. Mammals use only 9 sugar nucleotide donors for glycosyltransferases: UDP-glucose,
UDP-galactose Uridine diphosphate galactose (Uridine diphosphate, UDP-galactose) is an intermediate in the production of polysaccharides. It is important in nucleotide sugars metabolism, and is the substrate for the transferase B4GALT5. Sugar metabolism Urid ...
, UDP-GlcNAc, UDP-GalNAc, UDP-xylose, UDP-glucuronic acid, GDP-mannose, GDP-fucose, and CMP-sialic acid. The phosphate(s) of these donor molecules are usually coordinated by divalent cations such as manganese, however metal independent enzymes exist. Many glycosyltransferases are single-pass transmembrane proteins, and they are usually anchored to membranes of
Golgi apparatus The Golgi apparatus (), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic Cell (biology), cells. Part of the endomembrane system in the cytoplasm, it protein targeting, packages proteins ...


Mechanism

Glycosyltransferases can be segregated into "retaining" or "inverting" enzymes according to whether the stereochemistry of the donor's anomeric bond is retained (α→α) or inverted (α→β) during the transfer. The inverting mechanism is straightforward, requiring a single nucleophilic attack from the accepting atom to invert stereochemistry. The retaining mechanism has been a matter of debate, but there exists strong evidence against a double displacement mechanism (which would cause two inversions about the anomeric carbon for a net retention of stereochemistry) or a dissociative mechanism (a prevalent variant of which was known as SNi). An "orthogonal associative" mechanism has been proposed which, akin to the inverting enzymes, requires only a single nucleophilic attack from an acceptor from a non-linear angle (as observed in many crystal structures) to achieve anomer retention.


Reaction reversibility

The recent discovery of the reversibility of many reactions catalyzed by inverting glycosyltransferases served as a paradigm shift in the field and raises questions regarding the designation of sugar nucleotides as 'activated' donors.


Classification by sequence

Sequence-based classification methods have proven to be a powerful way of generating hypotheses for protein function based on sequence alignment to related proteins. The carbohydrate-active enzyme database presents a sequence-based classification of glycosyltransferases into over 90 families. The same three-dimensional fold is expected to occur within each of the families.


Structure

In contrast to the diversity of 3D structures observed for
glycoside hydrolase In biochemistry, glycoside hydrolases (also called glycosidases or glycosyl hydrolases) are a class of enzymes which catalysis, catalyze the hydrolysis of glycosidic bonds in polysaccharide, complex sugars. They are extremely common enzymes, wi ...
s, glycosyltransferase have a much smaller range of structures. In fact, according to the
Structural Classification of Proteins The Structural Classification of Proteins (SCOP) database is a largely manual classification of protein structural domains based on similarities of their structures and amino acid sequences. A motivation for this classification is to determine t ...
database, only three different folds have been observed for glycosyltransferases Very recently, a new glycosyltransferase fold was identified for the glycosyltransferases involved in the biosynthesis of the NAG-NAM polymer backbone of
peptidoglycan Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like layer (sacculus) that surrounds the bacterial cytoplasmic membrane. The sugar component consists of alternating ...
.


Inhibitors

Many inhibitors of glycosyltransferases are known. Some of these are natural products, such as moenomycin, an inhibitor of peptidoglycan glycosyltransferases, the nikkomycins, inhibitors of chitin synthase, and the echinocandins, inhibitors of fungal β-1,3-glucan synthases. Some glycosyltransferase inhibitors are of use as drugs or antibiotics. Moenomycin is used in animal feed as a growth promoter.
Caspofungin Caspofungin ( INN; brand name Cancidas) is a lipopeptide antifungal drug from Merck & Co., Inc. It is a member of a class of antifungals termed the echinocandins. It works by inhibiting the enzyme (1→3)-β-D-glucan synthase and thereby di ...
has been developed from the echinocandins and is in use as an antifungal agent.
Ethambutol Ethambutol (EMB, E) is a medication primarily used to treat tuberculosis. It is usually given in combination with other tuberculosis medications, such as isoniazid, rifampicin and pyrazinamide. It may also be used to treat ''Mycobacterium avi ...
is an inhibitor of mycobacterial arabinotransferases and is used for the treatment of tuberculosis.
Lufenuron Lufenuron is the active ingredient in the veterinary flea control medication program, and one of the two active ingredients in the flea, heartworm, and anthelmintic medicine milbemycin oxime/lufenuron (Sentinel). Lufenuron is stored in the anim ...
is an inhibitor of insect chitin syntheses and is used to control fleas in animals. Imidazolium-based synthetic inhibitors of glycosyltransferases have been designed for use as antimicrobial and antiseptic agents.


Determinant of blood type

The
ABO blood group system The ABO blood group system is used to denote the presence of one, both, or neither of the A and B antigens on erythrocytes (red blood cells). For human blood transfusions, it is the most important of the 47 different blood type (or group) c ...
is determined by what type of glycosyltransferases are expressed in the body. The ABO gene locus expressing the glycosyltransferases has three main allelic forms: A, B, and O. The A allele encodes 1-3-N-acetylgalactosaminyltransferase that bonds α- N-acetylgalactosamine to D-galactose end of H antigen, producing the A antigen. The B allele encodes 1-3-galactosyltransferase that joins α-D-galactose bonded to D-galactose end of H antigen, creating the B antigen. In case of O allele the exon 6 contains a deletion that results in a loss of enzymatic activity. The O allele differs slightly from the A allele by deletion of a single nucleotide -
Guanine Guanine () (symbol G or Gua) is one of the four main nucleotide bases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, and thymine ( uracil in RNA). In DNA, guanine is paired with cytosine. The guanine nucleoside ...
at position 261. The deletion causes a frameshift and results in translation of an almost entirely different protein that lacks enzymatic activity. This results in H antigen remaining unchanged in case of O groups. The combination of glycosyltransferases by both alleles present in each person determines whether there is an AB, A, B or O blood type.


Uses

Glycosyltransferases have been widely used in both the targeted synthesis of specific glycoconjugates as well as the synthesis of differentially glycosylated libraries of drugs, biological probes or natural products in the context of
drug discovery In the fields of medicine, biotechnology, and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or ...
and
drug development Drug development is the process of bringing a new pharmaceutical drug to the market once a lead compound has been identified through the process of drug discovery. It includes preclinical research on microorganisms and animals, filing for regu ...
(a process known as glycorandomization). Suitable enzymes can be isolated from natural sources or produced recombinantly. As an alternative, whole cell-based systems using either endogenous glycosyl donors or cell-based systems containing cloned and expressed systems for synthesis of glycosyl donors have been developed. In cell-free approaches, the large-scale application of glycosyltransferases for glycoconjugate synthesis has required access to large quantities of the glycosyl donors. On the flip-side, nucleotide recycling systems that allow the resynthesis of glycosyl donors from the released nucleotide have been developed. The nucleotide recycling approach has a further benefit of reducing the amount of nucleotide formed as a by-product, thereby reducing the amount of inhibition caused to the glycosyltransferase of interest – a commonly observed feature of the nucleotide byproduct.


See also

* Carbohydrate chemistry * Chemical glycosylation *
Glucuronosyltransferase Uridine 5'-diphospho-glucuronosyltransferase ( UDP-glucuronosyltransferase, UDPGT or UGT) is a microsomal glycosyltransferase () that catalyzes the transfer of the glucuronic acid component of UDP-glucuronic acid to a small hydrophobic molecu ...
*
Glycogen synthase Glycogen synthase (UDP-glucose-glycogen glucosyltransferase) is a key enzyme in glycogenesis, the conversion of glucose into glycogen. It is a glycosyltransferase () that catalyses the reaction of UDP-glucose and (1,4--D-glucosyl)n to yield UD ...
* Glycosyl acceptor *
Glycosyl donor A glycosyl donor is a carbohydrate mono- or oligosaccharide that will react with a suitable glycosyl acceptor to form a new glycosidic bond. By convention, the donor is the member of this pair that contains the resulting anomeric carbon of the new g ...
*
Glycosylation Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
*
Oligosaccharyltransferase Oligosaccharyltransferase or OST () is a membrane protein complex that transfers a 14-sugar oligosaccharide from dolichol to nascent protein. It is a type of glycosyltransferase. The sugar Glc3Man9GlcNAc2 (where Glc=Glucose, Man= Mannose, and ...


References

{{Portal bar, Biology, border=no Carbohydrates Carbohydrate chemistry Transferases EC 2.4 EC 2.4.1 EC 2.4.2 Peripheral membrane proteins Glycobiology