HOME

TheInfoList



OR:

Elementary mathematics consists of mathematics topics frequently taught at the
primary Primary or primaries may refer to: Arts, entertainment, and media Music Groups and labels * Primary (band), from Australia * Primary (musician), hip hop musician and record producer from South Korea * Primary Music, Israeli record label Work ...
or secondary school levels. In the Canadian curriculum, there are six basic strands in Elementary Mathematics: Number, Algebra, Data, Spatial Sense, Financial Literacy, and Social emotional learning skills and math processes. These six strands are the focus of Mathematics education from grade 1 through grade 8. In secondary school, the main topics in elementary mathematics from grade nine until grade ten are: Number Sense and algebra, Linear Relations, Measurement and Geometry. Once students enter grade eleven and twelve students begin university and college preparation classes, which include: Functions, Calculus & Vectors, Advanced Functions, and Data Management.


Strands of elementary mathematics


Number Sense and Numeration

Number Sense is an understanding of numbers and operations. In the 'Number Sense and Numeration' strand students develop an understanding of numbers by being taught various ways of representing numbers, as well as the relationships among numbers. Properties of the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
such as
divisibility In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
and the distribution of
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
s, are studied in basic
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
, another part of elementary mathematics. Elementary Focus *
Abacus The abacus (''plural'' abaci or abacuses), also called a counting frame, is a calculating tool which has been used since ancient times. It was used in the ancient Near East, Europe, China, and Russia, centuries before the adoption of the H ...
* LCM and GCD *
Fractions A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
and Decimals *
Place Value Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the ...
&
Face Value The face value, sometimes called nominal value, is the value of a coin, bond, stamp or paper money as printed on the coin, stamp or bill itself by the issuing authority. The face value of coins, stamps, or bill is usually its legal value. Ho ...
*
Addition Addition (usually signified by the plus symbol ) is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or ''sum'' of ...
and
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
*
Multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being ad ...
and Division *
Counting Counting is the process of determining the number of elements of a finite set of objects, i.e., determining the size of a set. The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for every elem ...
*Counting
Money Money is any item or verifiable record that is generally accepted as payment for goods and services and repayment of debts, such as taxes, in a particular country or socio-economic context. The primary functions which distinguish money ar ...
*
Algebra Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
*Representing and ordering numbers * Estimating * Approximating *
Problem Solving Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business an ...
To have a strong foundation in mathematics and to be able to succeed in the other strands students need to have a fundamental understanding of number sense and numeration.


Spatial Sense

'Measurement skills and concepts' or 'Spatial Sense' are directly related to the world in which students live. Many of the concepts that students are taught in this strand are also used in other subjects such as science, social studies, and physical education In the measurement strand students learn about the measurable attributes of objects, in addition to the basic metric system. Elementary Focus * Standard and non-standard
units of measurement A unit of measurement is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a mul ...
* telling
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, t ...
using 12 hour clock and 24 hour clock * comparing objects using measurable attributes *
measuring Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared ...
height Height is measure of vertical distance, either vertical extent (how "tall" something or someone is) or vertical position (how "high" a point is). For example, "The height of that building is 50 m" or "The height of an airplane in-flight is ab ...
, length, width * centimetres and
metres The metre ( British spelling) or meter ( American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its pr ...
*
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
and capacity * temperature change * days, months, weeks, years *
distances Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
using kilometres * measuring
kilograms The kilogram (also kilogramme) is the unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquially ...
and
litres The litre (international spelling) or liter (American English spelling) (SI symbols L and l, other symbol used: ℓ) is a metric unit of volume. It is equal to 1 cubic decimetre (dm3), 1000 cubic centimetres (cm3) or 0.001 cubic metre (m3 ...
* determining
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
and
perimeter A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several pr ...
* determining grams and millilitre * determining measurements using
shapes A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to l ...
such as a
triangular prism In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. ...
The measurement strand consists of multiple forms of measurement, as Marian Small states: "Measurement is the process of assigning a qualitative or quantitative description of size to an object based on a particular attribute."


Equations and formulas

A formula is an entity constructed using the symbols and formation rules of a given logical language. For example, determining the
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
of a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
requires a significant amount of
integral calculus In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with di ...
or its geometrical analogue, the
method of exhaustion The method of exhaustion (; ) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in area b ...
; but, having done this once in terms of some
parameter A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
(the
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
for example), mathematicians have produced a formula to describe the volume. : An equation is a formula of the form ''A'' = ''B'', where ''A'' and ''B'' are expressions that may contain one or several variables called unknowns, and "=" denotes the equality
binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
. Although written in the form of
proposition In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, "meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the no ...
, an equation is not a statement that is either true or false, but a problem consisting of finding the values, called solutions, that, when substituted for the unknowns, yield equal values of the expressions ''A'' and ''B''. For example, 2 is the unique ''solution'' of the ''equation'' ''x'' + 2 = 4, in which the ''unknown'' is ''x''.


Data

Data is a set of
values In ethics and social sciences, value denotes the degree of importance of something or action, with the aim of determining which actions are best to do or what way is best to live (normative ethics in ethics), or to describe the significance of dif ...
of
qualitative Qualitative descriptions or distinctions are based on some quality or characteristic rather than on some quantity or measured value. Qualitative may also refer to: *Qualitative property, a property that can be observed but not measured numericall ...
or
quantitative Quantitative may refer to: * Quantitative research, scientific investigation of quantitative properties * Quantitative analysis (disambiguation) * Quantitative verse, a metrical system in poetry * Statistics, also known as quantitative analysis ...
variables; restated, pieces of data are individual pieces of
information Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level information pertains to the interpretation of that which may be sensed. Any natural process that is not completely random, ...
. Data in
computing Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, ...
(or
data processing Data processing is the collection and manipulation of digital data to produce meaningful information. Data processing is a form of '' information processing'', which is the modification (processing) of information in any manner detectable by ...
) is represented in a structure that is often tabular (represented by rows and
columns A column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression membe ...
), a
tree In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are ...
(a set of
node In general, a node is a localized swelling (a "knot") or a point of intersection (a vertex). Node may refer to: In mathematics * Vertex (graph theory), a vertex in a mathematical graph * Vertex (geometry), a point where two or more curves, line ...
s with
parent A parent is a caregiver of the offspring in their own species. In humans, a parent is the caretaker of a child (where "child" refers to offspring, not necessarily age). A ''biological parent'' is a person whose gamete resulted in a child, a male ...
- children relationship), or a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
(a set of connected nodes). Data is typically the result of measurements and can be visualized using
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
s or
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensio ...
s. Data as an
abstract Abstract may refer to: * ''Abstract'' (album), 1962 album by Joe Harriott * Abstract of title a summary of the documents affecting title to parcel of land * Abstract (law), a summary of a legal document * Abstract (summary), in academic publishi ...
concept Concepts are defined as abstract ideas. They are understood to be the fundamental building blocks of the concept behind principles, thoughts and beliefs. They play an important role in all aspects of cognition. As such, concepts are studied by s ...
can be viewed as the lowest level of
abstraction Abstraction in its main sense is a conceptual process wherein general rules and concepts are derived from the usage and classification of specific examples, literal ("real" or " concrete") signifiers, first principles, or other methods. "An a ...
, from which
information Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level information pertains to the interpretation of that which may be sensed. Any natural process that is not completely random, ...
and then
knowledge Knowledge can be defined as awareness of facts or as practical skills, and may also refer to familiarity with objects or situations. Knowledge of facts, also called propositional knowledge, is often defined as true belief that is disti ...
are derived.


Basic two-dimensional geometry

Two-dimensional geometry is a branch of mathematics concerned with questions of shape, size, and relative position of two-dimensional figures. Basic topics in elementary mathematics include polygons, circles, perimeter and area. A
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...
is a shape that is bounded by a finite chain of straight
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
s closing in a loop to form a closed chain or ''circuit''. These segments are called its ''edges'' or ''sides'', and the points where two edges meet are the polygon's '' vertices'' (singular: vertex) or ''corners''. The interior of the polygon is sometimes called its ''body''. An ''n''-gon is a polygon with ''n'' sides. A polygon is a 2-dimensional example of the more general
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
in any number of dimensions. A
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
is a simple
shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on ...
of two-dimensional geometry that is the set of all
points Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Point ...
in a plane that are at a given distance from a given point, the center.The distance between any of the points and the center is called the
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
. It can also be defined as the locus of a point equidistant from a fixed point. A
perimeter A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several pr ...
is a path that surrounds a
two-dimensional In mathematics, a plane is a Euclidean ( flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise ...
shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on ...
. The term may be used either for the path or its length - it can be thought of as the length of the outline of a shape. The perimeter of a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
or ellipse is called its
circumference In geometry, the circumference (from Latin ''circumferens'', meaning "carrying around") is the perimeter of a circle or ellipse. That is, the circumference would be the arc length of the circle, as if it were opened up and straightened out t ...
.
Area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while ''surface area'' refers to the area of an open su ...
is the
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a uni ...
that expresses the extent of a
two-dimensional In mathematics, a plane is a Euclidean ( flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise ...
figure or
shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on ...
. There are several well-known formulas for the areas of simple shapes such as
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colli ...
s, rectangles, and
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
s.


Proportions

Two quantities are proportional if a change in one is always accompanied by a change in the other, and if the changes are always related by use of a constant multiplier. The constant is called the
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves ...
of proportionality or proportionality constant. *If one quantity is always
the product The Product is an alternative rock band based out of Goodells, Michigan. The Product formed in early 2009 with the original line-up of B.J. Perry, R.J. Perry, Rich Bennett and Jerome Reilly. Several months later the band parted ways with Jero ...
of the other and a constant, the two are said to be ''directly proportional''. are directly proportional if the
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
\tfrac yx is constant. *If the product of the two quantities is always equal to a constant, the two are said to be ''inversely proportional''. are inversely proportional if the product xy is constant.


Analytic geometry

Analytic geometry is the study of
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
using a coordinate system. This contrasts with synthetic geometry. Usually the
Cartesian coordinate system A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
is applied to manipulate equations for planes,
straight line In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segment ...
s, and
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
s, often in two and sometimes in three dimensions. Geometrically, one studies the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions ...
(2 dimensions) and
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
(3 dimensions). As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometrical shapes in a numerical way and extracting numerical information from shapes' numerical definitions and representations. Transformations are ways of shifting and scaling functions using different algebraic formulas.


Negative numbers

A
negative number In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is inequality (mathematics), less than 0 (number), zero. Negative numbers are often used to represent the magnitude of a loss ...
is a
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
that is less than
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
. Such numbers are often used to represent the amount of a loss or absence. For example, a
debt Debt is an obligation that requires one party, the debtor, to pay money or other agreed-upon value to another party, the creditor. Debt is a deferred payment, or series of payments, which differentiates it from an immediate purchase. The d ...
that is owed may be thought of as a negative asset, or a decrease in some quantity may be thought of as a negative increase. Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and
Fahrenheit The Fahrenheit scale () is a temperature scale based on one proposed in 1724 by the physicist Daniel Gabriel Fahrenheit (1686–1736). It uses the degree Fahrenheit (symbol: °F) as the unit. Several accounts of how he originally defined h ...
scales for temperature.


Exponents and radicals

Exponentiation is a
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
operation Operation or Operations may refer to: Arts, entertainment and media * ''Operation'' (game), a battery-operated board game that challenges dexterity * Operation (music), a term used in musical set theory * ''Operations'' (magazine), Multi-Man ...
, written as ''b''''n'', involving two numbers, the base ''b'' and the exponent (or power) ''n''. When ''n'' is a
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
(i.e., a positive
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
), exponentiation corresponds to repeated
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being ad ...
of the base: that is, ''bn'' is the product of multiplying ''n'' bases: :b^n = \underbrace_n Roots are the opposite of exponents. The
nth root In mathematics, a radicand, also known as an nth root, of a number ''x'' is a number ''r'' which, when raised to the power ''n'', yields ''x'': :r^n = x, where ''n'' is a positive integer, sometimes called the ''degree'' of the root. A root ...
of a
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers ...
''x'' (written \sqrt /math>) is a number ''r'' which when raised to the power ''n'' yields ''x''. That is, :\sqrt = r \iff r^n = x, where ''n'' is the ''degree'' of the root. A root of degree 2 is called a ''
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
'' and a root of degree 3, a '' cube root''. Roots of higher degree are referred to by using ordinal numbers, as in ''fourth root'', ''twentieth root'', etc. For example: * 2 is a square root of 4, since 22 = 4. * −2 is also a square root of 4, since (−2)2 = 4.


Compass-and-straightedge

Compass-and-straightedge, also known as ruler-and-compass construction, is the construction of lengths,
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
s, and other geometric figures using only an idealized
ruler A ruler, sometimes called a rule, line gauge, or scale, is a device used in geometry and technical drawing, as well as the engineering and construction industries, to measure distances or draw straight lines. Variants Rulers have long ...
and
compass A compass is a device that shows the cardinal directions used for navigation and geographic orientation. It commonly consists of a magnetized needle or other element, such as a compass card or compass rose, which can pivot to align itself with ...
. The idealized ruler, known as a
straightedge A straightedge or straight edge is a tool used for drawing straight lines, or checking their straightness. If it has equally spaced markings along its length, it is usually called a ruler. Straightedges are used in the automotive service and ma ...
, is assumed to be infinite in length, and has no markings on it and only one edge. The compass is assumed to collapse when lifted from the page, so may not be directly used to transfer distances. (This is an unimportant restriction since, using a multi-step procedure, a distance can be transferred even with a collapsing compass, see
compass equivalence theorem In geometry, the compass equivalence theorem is an important statement in compass and straightedge constructions. The tool advocated by Plato in these constructions is a ''divider'' or ''collapsing compass'', that is, a compass that "collapses" wh ...
.) More formally, the only permissible constructions are those granted by
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Elements'' treatise, which established the foundations of ...
's first three postulates.


Congruence and similarity

Two figures or objects are congruent if they have the same
shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on ...
and size, or if one has the same shape and size as the mirror image of the other. More formally, two sets of
points Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Point ...
are called congruent if, and only if, one can be transformed into the other by an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
, i.e., a combination of rigid motions, namely a
translation Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
, a
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. So two distinct plane figures on a piece of paper are congruent if we can cut them out and then match them up completely. Turning the paper over is permitted. Two geometrical objects are called similar if they both have the same
shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on ...
, or one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling (enlarging or shrinking), possibly with additional
translation Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
,
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
and reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruent to the result of a uniform scaling of the other.


Three-dimensional geometry

Solid geometry In mathematics, solid geometry or stereometry is the traditional name for the geometry of three-dimensional, Euclidean spaces (i.e., 3D geometry). Stereometry deals with the measurements of volumes of various solid figures (or 3D figures), inc ...
was the traditional name for the
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
of three-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
. Stereometry deals with the measurements of
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
s of various solid figures (
three-dimensional Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informal ...
figures) including
pyramids A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilat ...
,
cylinders A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infini ...
, cones, truncated cones,
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
s, and prisms.


Rational numbers

Rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
is any
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers ...
that can be expressed as the
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
or fraction ''p''/''q'' of two
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s, with the
denominator A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
''q'' not equal to zero. Since ''q'' may be equal to 1, every integer is a rational number. The set of all rational numbers is usually denoted by a boldface Q (or
blackboard bold Blackboard bold is a typeface style that is often used for certain symbols in mathematical texts, in which certain lines of the symbol (usually vertical or near-vertical lines) are doubled. The symbols usually denote number sets. One way of p ...
\mathbb).


Patterns, relations and functions

A
pattern A pattern is a regularity in the world, in human-made design, or in abstract ideas. As such, the elements of a pattern repeat in a predictable manner. A geometric pattern is a kind of pattern formed of geometric shapes and typically repeated li ...
is a discernible regularity in the world or in a manmade design. As such, the elements of a pattern repeat in a predictable manner. A geometric pattern is a kind of pattern formed of geometric shapes and typically repeating like a
wallpaper Wallpaper is a material used in interior decoration to decorate the interior walls of domestic and public buildings. It is usually sold in rolls and is applied onto a wall using wallpaper paste Adhesive flakes that are mixed with water to pro ...
. A relation on a set ''A'' is a collection of
ordered pair In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In co ...
s of elements of ''A''. In other words, it is a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ ...
''A''2 = . Common relations include divisibility between two numbers and inequalities. A function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. An example is the function that relates each real number ''x'' to its square ''x''2. The output of a function ''f'' corresponding to an input ''x'' is denoted by ''f''(''x'') (read "''f'' of ''x''"). In this example, if the input is −3, then the output is 9, and we may write ''f''(−3) = 9. The input variable(s) are sometimes referred to as the argument(s) of the function.


Slopes and trigonometry

The slope of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''.
Trigonometry Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. ...
is a branch of mathematics that studies relationships involving lengths and
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
s of
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colli ...
s. The field emerged during the 3rd century BC from applications of
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
to astronomical studies. The slope is studied in grade 8.


United States

In the United States, there has been considerable concern about the low level of elementary mathematics skills on the part of many students, as compared to students in other developed countries. The
No Child Left Behind The No Child Left Behind Act of 2001 (NCLB) was a U.S. Act of Congress that reauthorized the Elementary and Secondary Education Act; it included Title I provisions applying to disadvantaged students. It supported standards-based educati ...
program was one attempt to address this deficiency, requiring that all American students be tested in elementary mathematics.Frederick M. Hess and Michael J. Petrilli, ''No Child Left Behind'', Peter Lang Publishing, 2006, .


References

{{DEFAULTSORT:Elementary Mathematics