HOME



picture info

Quotient
In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in the case of Euclidean division) or a fraction or ratio (in the case of a general division). For example, when dividing 20 (the ''dividend'') by 3 (the ''divisor''), the ''quotient'' is 6 (with a remainder of 2) in the first sense and 6+\tfrac=6.66... (a repeating decimal) in the second sense. In metrology (International System of Quantities and the International System of Units), "quotient" refers to the general case with respect to the units of measurement of physical quantities. ''Ratios'' is the special case for dimensionless quotients of two quantities of the same kind. Quotients with a non-trivial dimension and compound units, especially when the divisor is a duration (e.g., "per second"), are known as ''rates''. For example, densi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or blackboard bold A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer Part
In mathematics, the floor function is the function that takes as input a real number , and gives as output the greatest integer less than or equal to , denoted or . Similarly, the ceiling function maps to the least integer greater than or equal to , denoted or . For example, for floor: , , and for ceiling: , and . The floor of is also called the integral part, integer part, greatest integer, or entier of , and was historically denoted (among other notations). However, the same term, ''integer part'', is also used for truncation towards zero, which differs from the floor function for negative numbers. For an integer , . Although and produce graphs that appear exactly alike, they are not the same when the value of is an exact integer. For example, when , . However, if , then , while . Notation The ''integral part'' or ''integer part'' of a number ( in the original) was first defined in 1798 by Adrien-Marie Legendre in his proof of the Legendre's formula. Carl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ratio
In mathematics, a ratio () shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3). Similarly, the ratio of lemons to oranges is 6:8 (or 3:4) and the ratio of oranges to the total amount of fruit is 8:14 (or 4:7). The numbers in a ratio may be quantities of any kind, such as counts of people or objects, or such as measurements of lengths, weights, time, etc. In most contexts, both numbers are restricted to be Positive integer, positive. A ratio may be specified either by giving both constituting numbers, written as "''a'' to ''b''" or "''a'':''b''", or by giving just the value of their quotient Equal quotients correspond to equal ratios. A statement expressing the equality of two ratios is called a ''proportion''. Consequently, a ratio may be considered as an ordered pair of numbers, a Fraction (mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Specific Quantity
In the natural sciences, including physiology and engineering, a specific quantity generally refers to an intensive quantity obtained by the ratio of an extensive quantity of interest by another extensive quantity (usually mass or volume). If mass is the divisor quantity, the specific quantity is a ''massic quantity''. If volume is the divisor quantity, the specific quantity is a ''volumic quantity''. For example, massic leaf area is leaf area divided by leaf mass and volumic leaf area is leaf area divided by leaf volume. Derived SI units involve reciprocal kilogram (kg−1), e.g., square metre per kilogram (m2kg−1). Another kind of specific quantity, termed ''named specific quantity'', is a generalization of the original concept. The divisor quantity is not restricted to mass, and name of the divisor is usually placed before "specific" in the full term (e.g., " thrust-specific fuel consumption"). Named and unnamed specific quantities are given for the terms below. List M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ratio
In mathematics, a ratio () shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3). Similarly, the ratio of lemons to oranges is 6:8 (or 3:4) and the ratio of oranges to the total amount of fruit is 8:14 (or 4:7). The numbers in a ratio may be quantities of any kind, such as counts of people or objects, or such as measurements of lengths, weights, time, etc. In most contexts, both numbers are restricted to be Positive integer, positive. A ratio may be specified either by giving both constituting numbers, written as "''a'' to ''b''" or "''a'':''b''", or by giving just the value of their quotient Equal quotients correspond to equal ratios. A statement expressing the equality of two ratios is called a ''proportion''. Consequently, a ratio may be considered as an ordered pair of numbers, a Fraction (mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rate (mathematics)
In mathematics, a rate is the quotient of two quantities, often represented as a fraction. If the divisor (or fraction denominator) in the rate is equal to one expressed as a single unit, and if it is assumed that this quantity can be changed systematically (i.e., is an independent variable), then the dividend (the fraction numerator) of the rate expresses the corresponding rate of change in the other ( dependent) variable. In some cases, it may be regarded as a change to a value, which is caused by a change of a value in respect to another value. For example, acceleration is a change in velocity with respect to time ''Temporal rate'' is a common type of rate ("per unit of time"), such as speed, heart rate, and flux. In fact, often ''rate'' is a synonym of rhythm or frequency, a count per second (i.e., hertz); e.g., radio frequencies or sample rates. In describing the units of a rate, the word "per" is used to separate the units of the two measurements used to calculate th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Per Second
The inverse second or reciprocal second (s−1), also called ''per second'', is a unit defined as the multiplicative inverse of the second (a unit of time). It is applicable for physical quantities of dimension reciprocal time, such as frequency and strain rate. It is dimensionally equivalent to: * hertz (Hz), historically known as cycles per second – the SI unit for frequency and rotational frequency * becquerel (Bq) – the SI unit for the rate of occurrence of aperiodic or stochastic radionuclide events * baud (Bd) – the unit for symbol rate over a communication link * bit per second (bit/s) – the unit of bit rate However, the special names and symbols above for s−1 are recommend for clarity. Reciprocal second should not be confused with radian per second (rad⋅s−1), the SI unit for angular frequency and angular velocity. As the radian is a dimensionless unit, radian per second is dimensionally consistent with reciprocal second. However, they are used for dif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Remainder
In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient ( integer division). In algebra of polynomials, the remainder is the polynomial "left over" after dividing one polynomial by another. The ''modulo operation'' is the operation that produces such a remainder when given a dividend and divisor. Alternatively, a remainder is also what is left after subtracting one number from another, although this is more precisely called the '' difference''. This usage can be found in some elementary textbooks; colloquially it is replaced by the expression "the rest" as in "Give me two dollars back and keep the rest." However, the term "remainder" is still used in this sense when a function is approximated by a series expansion, where the error expression ("the rest") is referred to as the remainder term. Integer division Gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intensive Quantity
Physical or chemical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. The terms "intensive and extensive quantities" were introduced into physics by German mathematician Georg Helm in 1898, and by American physicist and chemist Richard C. Tolman in 1917. According to International Union of Pure and Applied Chemistry (IUPAC), an intensive property or intensive quantity is one whose magnitude is independent of the size of the system. An intensive property is not necessarily homogeneously distributed in space; it can vary from place to place in a body of matter and radiation. Examples of intensive properties include temperature, ''T''; refractive index, ''n''; density, ''ρ''; and hardness, ''η''. By contrast, an extensive property or extensive quantity is one whose magnitude is additive for subsystems. Examples include mass, volume and Gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]