Polygonal Chain
In geometry, a polygonal chain is a connected series of line segments. More formally, a polygonal chain is a curve specified by a sequence of points (A_1, A_2, \dots, A_n) called its vertices. The curve itself consists of the line segments connecting the consecutive vertices. Variations Simple A simple polygonal chain is one in which only consecutive segments intersect and only at their endpoints. Closed A closed polygonal chain is one in which the first vertex coincides with the last one, or, alternatively, the first and the last vertices are also connected by a line segment. A simple closed polygonal chain in the plane is the boundary of a simple polygon. Often the term "polygon" is used in the meaning of "closed polygonal chain", but in some cases it is important to draw a distinction between a polygonal area and a polygonal chain. A space closed polygonal chain is also known as a skew "polygon". Monotone A polygonal chain is called ''monotone'' if there is a strai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chainline
The chainline is the angle of a bicycle chain relative to the centerline of the bicycle frame. A bicycle is said to have a perfect chainline if the chain is parallel to the centerline of the frame, which means that the rear sprocket is directly behind the front chainring. Chainline can also refer to the distance between a sprocket and the centerline of the frame. Bicycles without a straight chainline are slightly less efficient due to frictional losses incurred by running the chain at an angle between the front chainring and rear sprocket. This is the main reason that a single-speed bicycle can be more efficient than a derailleur geared bicycle. Single-speed bicycles should have the straightest possible chainline. See also * Bicycle gearing * Bicycle performance Bicycle performance is measurable performance such as energy efficiency that affects how effective a bicycle is. Bicycles are extraordinarily efficient machines; in terms of the amount of energy a person must expe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Piecewise Linear Function
In mathematics, a piecewise linear or segmented function is a real-valued function of a real variable, whose graph is composed of straight-line segments. Definition A piecewise linear function is a function defined on a (possibly unbounded) interval of real numbers, such that there is a collection of intervals on each of which the function is an affine function. (Thus "piecewise linear" is actually defined to mean "piecewise affine".) If the domain of the function is compact, there needs to be a finite collection of such intervals; if the domain is not compact, it may either be required to be finite or to be locally finite in the reals. Examples The function defined by : f(x) = \begin -x - 3 & \textx \leq -3 \\ x + 3 & \text-3 < x < 0 \\ -2x + 3 & \text0 \leq x < 3 \\ 0.5x - 4.5 & \textx \geq 3 \end is piecewise linear with four pieces. The graph of this function is shown to the right. Since the graph of an affine(*) function is a [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Point Location
The point location problem is a fundamental topic of computational geometry. It finds applications in areas that deal with processing geometrical data: computer graphics, geographic information systems (GIS), motion planning, and computer aided design (CAD). In its most general form, the problem is, given a partition of the space into disjoint regions, to determine the region where a query point lies. For example, the problem of determining which window of a graphical user interface contains a given mouse click can be formulated as an instance of point location, with a subdivision formed by the visible parts of each window, although specialized data structures may be more appropriate than general-purpose point location data structures in this application. Another special case is the point in polygon problem, in which one needs to determine whether a point is inside, outside, or on the boundary of a single polygon. In many applications, one needs to determine the location of sev ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bézier Curve
A Bézier curve ( , ) is a parametric equation, parametric curve used in computer graphics and related fields. A set of discrete "control points" defines a smooth, continuous curve by means of a formula. Usually the curve is intended to approximate a real-world shape that otherwise has no mathematical representation or whose representation is unknown or too complicated. The Bézier curve is named after France, French engineer Pierre Bézier (1910–1999), who used it in the 1960s for designing curves for the bodywork of Renault cars. Other uses include the design of computer fonts and animation. Bézier curves can be combined to form a Composite Bézier curve, Bézier spline, or generalized to higher dimensions to form Bézier surfaces. The Bézier triangle is a special case of the latter. In vector graphics, Bézier curves are used to model smooth curves that can be scaled indefinitely. "Paths", as they are commonly referred to in image manipulation programs, are combinations of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Control Point (mathematics)
In computer-aided geometric design a control point is a member of a set of Point (geometry), points used to determine the shape of a spline curve or, more generally, a computer representation of surfaces, surface or higher-dimensional object. For Bézier curves, it has become customary to refer to the -vectors in a parametric representation \sum_i \mathbf p_i \phi_i of a curve or surface in -space as control points, while the Scalar field, scalar-valued functions , defined over the relevant parameter domain, are the corresponding weight function, ''weight'' or ''blending functions''. Some would reasonably insist, in order to give intuitive geometric meaning to the word "control", that the blending functions form a partition of unity, i.e., that the are nonnegative and sum to one. This property implies that the curve lies within the convex hull of its control points.. This is the case for Bézier's representation of a polynomial curve as well as for the B-spline representation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer-aided Geometric Design
Computer-aided design (CAD) is the use of computers (or ) to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software help protect products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used. Its use in designing electronic systems is known as ''electronic design automation'' (''EDA''). In mechanical design it is known as ''mechanical design automation'' (''MDA''), which includes the process of creating a technical drawing with the use of computer software. CAD software for mechanical design uses either vector-based graphics to depict t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bézier 4 Big
Bézier can refer to: *Pierre Bézier, French engineer and creator of Bézier curves *Bézier curve *Bézier triangle *Bézier spline (other) *Bézier surface * The city of Béziers in France *AS Béziers Hérault Association sportive de Béziers Hérault (; ), often referred to by rugby media simply by its location of Béziers, is a French rugby union club currently playing in the second level of the country's professional rugby system, Pro D2. They earn ..., a French rugby union team * Bézier Games, an American board game publisher {{disambig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bend Minimization
In graph drawing styles that represent the edges of a graph by polylines (sequences of line segments connected at bends), it is desirable to minimize the number of bends per edge (sometimes called the curve complexity). or the total number of bends in a drawing.. Bend minimization is the algorithmic problem of finding a drawing that minimizes these quantities. Eliminating all bends The prototypical example of bend minimization is Fáry's theorem, which states that every planar graph can be drawn with no bends, that is, with all its edges drawn as straight line segments. Drawings of a graph in which the edges are both bendless and axis-aligned are sometimes called ''rectilinear drawings'', and are one way of constructing RAC drawings in which all crossings are at right angles. However, it is NP-complete to determine whether a planar graph has a planar rectilinear drawing, and NP-complete to determine whether an arbitrary graph has a rectilinear drawing that allows crossings.. Bend ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Drawing
Graph drawing is an area of mathematics and computer science combining methods from geometric graph theory and information visualization to derive two-dimensional depictions of graph (discrete mathematics), graphs arising from applications such as social network analysis, cartography, linguistics, and bioinformatics. A drawing of a graph or network diagram is a pictorial representation of the vertex (graph theory), vertices and edge (graph theory), edges of a graph. This drawing should not be confused with the graph itself: very different layouts can correspond to the same graph., p. 6. In the abstract, all that matters is which pairs of vertices are connected by edges. In the concrete, however, the arrangement of these vertices and edges within a drawing affects its understandability, usability, fabrication cost, and aesthetics. The problem gets worse if the graph changes over time by adding and deleting edges (dynamic graph drawing) and the goal is to preserve the user's men ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ramer–Douglas–Peucker Algorithm
The Ramer–Douglas–Peucker algorithm, also known as the Douglas–Peucker algorithm and iterative end-point fit algorithm, is an algorithm that decimates a curve composed of line segments to a similar curve with fewer points. It was one of the earliest successful algorithms developed for cartographic generalization. It produces the most accurate generalization, but it is also more time-consuming. Algorithm The starting curve is an ordered set of points or lines and the distance dimension . The algorithm recursively divides the line. Initially it is given all the points between the first and last point. It automatically marks the first and last point to be kept. It then finds the point that is farthest from the line segment with the first and last points as end points; this point is always farthest on the curve from the approximating line segment between the end points. If the point is closer than to the line segment, then any points not currently marked to be kept can ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Erdős–Szekeres Theorem
In mathematics, the Erdős–Szekeres theorem asserts that, given ''r'', ''s,'' any sequence of distinct real numbers with length at least (''r'' − 1)(''s'' − 1) + 1 contains a monotonically increasing subsequence of length ''r'' ''or'' a monotonically decreasing subsequence of length ''s''. The proof appeared in the same 1935 paper that mentions the Happy Ending problem. It is a finitary result that makes precise one of the corollaries of Ramsey's theorem. While Ramsey's theorem makes it easy to prove that every infinite sequence of distinct real numbers contains a monotonically increasing infinite subsequence ''or'' a monotonically decreasing infinite subsequence, the result proved by Paul Erdős and George Szekeres goes further. Example For ''r'' = 3 and ''s'' = 2, the formula tells us that any permutation of three numbers has an increasing subsequence of length three or a decreasing subsequence of len ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |