HOME

TheInfoList



OR:

A heat engine is a system that transfers
thermal energy The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including: * Internal energy: The energy contained within a body of matter or radiation, excluding the potential en ...
to do
mechanical Mechanical may refer to: Machine * Machine (mechanical), a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement * Mechanical calculator, a device used to perform the basic operations o ...
or
electrical work Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
. While originally conceived in the context of mechanical energy, the concept of the heat
engine An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy. Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power ge ...
has been applied to various other kinds of energy, particularly
electrical Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
, since at least the late 19th century. The heat engine does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the higher temperature state. The working substance generates work in the
working body A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes. According to inter ...
of the engine while transferring heat to the colder
sink A sink (also known as ''basin'' in the UK) is a bowl-shaped plumbing fixture for washing hands, dishwashing, and other purposes. Sinks have a tap (faucet) that supplies hot and cold water and may include a spray feature to be used for fas ...
until it reaches a lower temperature state. During this process some of the thermal energy is converted into
work Work may refer to: * Work (human activity), intentional activity people perform to support themselves, others, or the community ** Manual labour, physical work done by humans ** House work, housework, or homemaking ** Working animal, an ani ...
by exploiting the properties of the working substance. The working substance can be any system with a non-zero
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is a ...
, but it usually is a gas or liquid. During this process, some heat is normally lost to the surroundings and is not converted to work. Also, some energy is unusable because of
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
and drag. In general, an engine is any
machine A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromol ...
that converts
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
to mechanical
work Work may refer to: * Work (human activity), intentional activity people perform to support themselves, others, or the community ** Manual labour, physical work done by humans ** House work, housework, or homemaking ** Working animal, an ani ...
. Heat engines distinguish themselves from other types of engines by the fact that their efficiency is fundamentally limited by Carnot's theorem of
thermodynamics Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
. Although this efficiency limitation can be a drawback, an advantage of heat engines is that most forms of energy can be easily converted to heat by processes like
exothermic reaction In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change Δ''H''⚬ is negative." Exothermic reactions usually release heat. The term is often confused with exergonic reaction, which IUPAC define ...
s (such as combustion),
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactiv ...
, absorption of light or energetic particles,
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
,
dissipation In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system. In a dissipative process, energy ( internal, bulk flow kinetic, or system potential) transforms from an initial form to a final form, wh ...
and resistance. Since the heat source that supplies thermal energy to the engine can thus be powered by virtually any kind of energy, heat engines cover a wide range of applications. Heat engines are often confused with the cycles they attempt to implement. Typically, the term "engine" is used for a physical device and "cycle" for the models.


Overview

In
thermodynamics Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
, heat engines are often modeled using a standard engineering model such as the
Otto cycle An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines. The Otto cycle is a description of what happ ...
. The theoretical model can be refined and augmented with actual data from an operating engine, using tools such as an
indicator diagram An indicator diagram is a chart used to measure the thermal, or cylinder, performance of Reciprocating engine, reciprocating steam and Internal combustion engine, internal combustion engines and compressors. An indicator chart records the press ...
. Since very few actual implementations of heat engines exactly match their underlying thermodynamic cycles, one could say that a thermodynamic cycle is an ideal case of a mechanical engine. In any case, fully understanding an engine and its efficiency requires a good understanding of the (possibly simplified or idealised) theoretical model, the practical nuances of an actual mechanical engine and the discrepancies between the two. In general terms, the larger the difference in temperature between the hot source and the cold sink, the larger is the potential
thermal efficiency In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc. For ...
of the cycle. On Earth, the cold side of any heat engine is limited to being close to the ambient temperature of the environment, or not much lower than 300
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
, so most efforts to improve the thermodynamic efficiencies of various heat engines focus on increasing the temperature of the source, within material limits. The maximum theoretical efficiency of a heat engine (which no engine ever attains) is equal to the temperature difference between the hot and cold ends divided by the temperature at the hot end, each expressed in
absolute temperature Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion. Thermodynamic temperature is typically expres ...
. The efficiency of various heat engines proposed or used today has a large range: *3% (97 percent waste heat using low quality heat) for the
ocean thermal energy conversion Ocean thermal energy conversion (OTEC) is a renewable energy technology that harnesses the thermocline, temperature difference between the photic zone, warm surface waters of the ocean and the deep sea, cold depths to run a heat engine to produce ...
(OTEC) ocean power proposal *25% for most automotive gasoline engines *49% for a supercritical
coal-fired power station A coal-fired power station or coal power plant is a thermal power station which burns coal to generate electricity. Worldwide there are about 2,500 coal-fired power stations, on average capable of generating a gigawatt each. They generate ...
such as the Avedøre Power Station *50%+ for long stroke marine Diesel enginesbr>
*60% for a
combined cycle A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turb ...
gas turbine A gas turbine or gas turbine engine is a type of Internal combustion engine#Continuous combustion, continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas gene ...
The efficiency of these processes is roughly proportional to the temperature drop across them. Significant energy may be consumed by auxiliary equipment, such as pumps, which effectively reduces efficiency.


Examples

Although some cycles have a typical combustion location (internal or external), they can often be implemented with the other. For example,
John Ericsson John Ericsson (born Johan Ericsson; July 31, 1803 – March 8, 1889) was a Swedish-American engineer and inventor. He was active in England and the United States. Ericsson collaborated on the design of the railroad steam locomotive Novelty (lo ...
developed an external heated engine running on a cycle very much like the earlier
Diesel cycle The Diesel cycle is a combustion process of a reciprocating internal combustion engine. In it, fuel is ignited by heat generated during the compression of air in the combustion chamber, into which fuel is then injected. This is in contrast to ig ...
. In addition, externally heated engines can often be implemented in open or closed cycles. In a closed cycle the working fluid is retained within the engine at the completion of the cycle whereas is an open cycle the working fluid is either exchanged with the environment together with the products of combustion in the case of the internal combustion engine or simply vented to the environment in the case of external combustion engines like
steam engine A steam engine is a heat engine that performs Work (physics), mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a Cylinder (locomotive), cyl ...
s and
turbines A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical ...
.


Everyday examples

Everyday examples of heat engines include the
thermal power station A thermal power station, also known as a thermal power plant, is a type of power station in which the heat energy generated from various fuel sources (e.g., coal, natural gas, nuclear fuel, etc.) is converted to electrical energy. The heat ...
,
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
,
firearm A firearm is any type of gun that uses an explosive charge and is designed to be readily carried and operated by an individual. The term is legally defined further in different countries (see legal definitions). The first firearms originate ...
s,
refrigerator A refrigerator, commonly shortened to fridge, is a commercial and home appliance consisting of a thermal insulation, thermally insulated compartment and a heat pump (mechanical, electronic or chemical) that transfers heat from its inside to ...
s and
heat pump A heat pump is a device that uses electricity to transfer heat from a colder place to a warmer place. Specifically, the heat pump transfers thermal energy using a heat pump and refrigeration cycle, cooling the cool space and warming the warm s ...
s. Power stations are examples of heat engines run in a forward direction in which heat flows from a hot reservoir and flows into a cool reservoir to produce work as the desired product. Refrigerators,
air conditioner Air conditioning, often abbreviated as A/C (US) or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior temperature, and in some cases, also controlling the humidity of internal air. Air c ...
s and heat pumps are examples of heat engines that are run in reverse, i.e. they use work to take heat energy at a low temperature and raise its temperature in a more efficient way than the simple conversion of work into heat (either through friction or electrical resistance). Refrigerators remove heat from within a thermally sealed chamber at low temperature and vent waste heat at a higher temperature to the environment and heat pumps take heat from the low temperature environment and 'vent' it into a thermally sealed chamber (a house) at higher temperature. In general heat engines exploit the thermal properties associated with the expansion and compression of gases according to the
gas laws The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws. The basic gas laws were discovered by the end of the 18th century when scientists found out that re ...
or the properties associated with
phase changes In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic s ...
between gas and liquid states.


Earth's heat engine

Earth's
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
and
hydrosphere The hydrosphere () is the combined mass of water found on, under, and above the Planetary surface, surface of a planet, minor planet, or natural satellite. Although Earth's hydrosphere has been around for about 4 billion years, it continues to ch ...
—Earth's heat engine—are coupled processes that constantly even out solar heating imbalances through evaporation of surface water, convection, rainfall, winds and ocean circulation, when distributing heat around the globe. A
Hadley cell The Hadley cell, also known as the Hadley circulation, is a global-scale tropical atmospheric circulation that features air rising near the equator, flowing poleward near the tropopause at a height of above the Earth's surface, cooling and des ...
is an example of a heat engine. It involves the rising of warm and moist air in the earth's equatorial region and the descent of colder air in the subtropics creating a thermally driven direct circulation, with consequent net production of kinetic energy.


Phase-change cycles

In phase change cycles and engines, the
working fluid For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. In hydraulics, water or hydraulic fluid transfers force between hydraulic components such as hydraulic pumps, hydraulic cylinders, a ...
s are gases and liquids. The engine converts the working fluid from a gas to a liquid, from liquid to gas, or both, generating work from the fluid expansion or compression. *
Rankine cycle The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sour ...
(classical
steam engine A steam engine is a heat engine that performs Work (physics), mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a Cylinder (locomotive), cyl ...
) * Regenerative cycle (
steam engine A steam engine is a heat engine that performs Work (physics), mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a Cylinder (locomotive), cyl ...
more efficient than
Rankine cycle The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sour ...
) *
Organic Rankine cycle In thermal engineering, the organic Rankine cycle (ORC) is a type of thermodynamic cycle. It is a variation of the Rankine cycle named for its use of an organic, high- molecular-mass fluid (compared to water) whose vaporization temperature is l ...
(Coolant changing phase in temperature ranges of ice and hot liquid water) *Vapor to liquid cycle ( drinking bird,
injector An injector is a system of ducting and nozzles used to direct the flow of a high-pressure fluid in such a way that a lower pressure fluid is Entrainment (hydrodynamics), entrained in the jet and carried through a duct to a region of higher pres ...
, Minto wheel) *Liquid to solid cycle (
frost heaving Frost heaving (or a frost heave) is an upwards swelling of soil during freezing conditions caused by an increasing presence of ice as it grows towards the surface, upwards from the depth in the soil where freezing temperatures have penetrated int ...
– water changing from ice to liquid and back again can lift rock up to 60 cm.) *Solid to gas cycle (
firearm A firearm is any type of gun that uses an explosive charge and is designed to be readily carried and operated by an individual. The term is legally defined further in different countries (see legal definitions). The first firearms originate ...
s – solid propellants combust to hot gases.)


Gas-only cycles

In these cycles and engines the working fluid is always a gas (i.e., there is no phase change): *
Carnot cycle A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Nicolas Léonard Sadi Carnot, Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem (thermodynamics), Carnot's theorem, it provides ...
(
Carnot heat engine A Carnot heat engine is a theoretical heat engine that operates on the Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded by Benoît Paul Émile ...
) * Ericsson cycle (Caloric Ship John Ericsson) *
Stirling cycle The Stirling cycle is a thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Robert Stirling with help from his brother, an en ...
(
Stirling engine A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (ph ...
, thermoacoustic devices) *
Internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
(ICE): **
Otto cycle An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines. The Otto cycle is a description of what happ ...
(e.g. gasoline/petrol engine) **
Diesel cycle The Diesel cycle is a combustion process of a reciprocating internal combustion engine. In it, fuel is ignited by heat generated during the compression of air in the combustion chamber, into which fuel is then injected. This is in contrast to ig ...
(e.g.
Diesel engine The diesel engine, named after the German engineer Rudolf Diesel, is an internal combustion engine in which Combustion, ignition of diesel fuel is caused by the elevated temperature of the air in the cylinder due to Mechanics, mechanical Compr ...
) **
Atkinson cycle The Atkinson-cycle engine is a type of internal combustion engine invented by James Atkinson (inventor), James Atkinson in 1882. The Atkinson cycle is designed to provide Energy conversion efficiency, efficiency at the expense of power density. ...
(Atkinson engine) **
Brayton cycle The Brayton cycle, also known as the Joule cycle, is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. It is characterized by isentropic process, isentropic compre ...
or Joule cycle originally Ericsson cycle (
gas turbine A gas turbine or gas turbine engine is a type of Internal combustion engine#Continuous combustion, continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas gene ...
) **
Lenoir cycle The Lenoir cycle is an idealized thermodynamic cycle often used to model a pulse jet engine. It is based on the operation of an engine patented by Jean Joseph Etienne Lenoir in 1860. This engine is often thought of as the first commercially pro ...
(e.g.,
pulse jet engine In medicine, the pulse refers to the rhythmic pulsations (expansion and contraction) of an artery in response to the cardiac cycle (heartbeat). The pulse may be felt (palpated) in any place that allows an artery to be compressed near the surface ...
) ** Miller cycle (Miller engine)


Liquid-only cycles

In these cycles and engines the working fluid are always like liquid: *
Stirling cycle The Stirling cycle is a thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Robert Stirling with help from his brother, an en ...
( Malone engine)


Electron cycles

* Johnson thermoelectric energy converter *Thermoelectric ( Peltier–Seebeck effect) * Thermogalvanic cell *
Thermionic emission Thermionic emission is the liberation of charged particles from a hot electrode whose thermal energy gives some particles enough kinetic energy to escape the material's surface. The particles, sometimes called ''thermions'' in early literature, a ...
* Thermotunnel cooling


Magnetic cycles

*
Thermo-magnetic motor Thermomagnetic motors (also known as Curie wheels, Curie-motors and pyromagnetic motors) convert heat into kinetic energy using the thermomagnetic effect, i.e., the influence of temperature on the magnetic material magnetization. Historical ba ...
(Tesla)


Cycles used for refrigeration

A domestic
refrigerator A refrigerator, commonly shortened to fridge, is a commercial and home appliance consisting of a thermal insulation, thermally insulated compartment and a heat pump (mechanical, electronic or chemical) that transfers heat from its inside to ...
is an example of a
heat pump A heat pump is a device that uses electricity to transfer heat from a colder place to a warmer place. Specifically, the heat pump transfers thermal energy using a heat pump and refrigeration cycle, cooling the cool space and warming the warm s ...
: a heat engine in reverse. Work is used to create a heat differential. Many cycles can run in reverse to move heat from the cold side to the hot side, making the cold side cooler and the hot side hotter. Internal combustion engine versions of these cycles are, by their nature, not reversible. Refrigeration cycles include: * Air cycle machine * Gas-absorption refrigerator *
Magnetic refrigeration The magnetocaloric effect (MCE, from '' magnet'' and ''calorie'') is a scientific phenomenon in which certain materials warm up when a magnetic field is applied. The warming is due to changes in the internal state of the material releasing heat. ...
*
Stirling cryocooler A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical work. ...
*
Vapor-compression refrigeration Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings an ...
* Vuilleumier cycle


Evaporative heat engines

The Barton evaporation engine is a heat engine based on a cycle producing power and cooled moist air from the evaporation of water into hot dry air.


Mesoscopic heat engines

Mesoscopic heat engines are nanoscale devices that may serve the goal of processing heat fluxes and perform useful work at small scales. Potential applications include e.g. electric cooling devices. In such mesoscopic heat engines, work per cycle of operation fluctuates due to thermal noise. There is exact equality that relates average of exponents of work performed by any heat engine and the heat transfer from the hotter heat bath. This relation transforms the Carnot's inequality into exact equality. This relation is also a Carnot cycle equality


Efficiency

The efficiency of a heat engine relates how much useful work is output for a given amount of heat energy input. From the laws of
thermodynamics Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
, after a completed cycle:. : W + Q = \Delta_U = 0 :and therefore : W = -Q = - (Q_c + Q_h) :where : W = -\oint PdV is the net work extracted from the engine in one cycle. (It is negative, in the IUPAC convention, since work is ''done by'' the engine.) : Q_h > 0 is the heat energy taken from the high temperature heat source in the surroundings in one cycle. (It is positive since heat energy is ''added'' to the engine.) : Q_c = -, Q_c, <0 is the waste heat given off by the engine to the cold temperature heat sink. (It is negative since heat is ''lost'' by the engine to the sink.) In other words, a heat engine absorbs heat energy from the high temperature heat source, converting part of it to useful work and giving off the rest as waste heat to the cold temperature heat sink. In general, the efficiency of a given heat transfer process is defined by the ratio of "what is taken out" to "what is put in". (For a refrigerator or heat pump, which can be considered as a heat engine run in reverse, this is the
coefficient of performance The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work (energy) required. Higher COPs equate to higher efficiency, lower energy ( ...
and it is ≥ 1.) In the case of an engine, one desires to extract work and has to put in heat Q_h , for instance from
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion ...
of a fuel, so the engine efficiency is reasonably defined as :\eta = \frac = \frac = 1 + \frac = 1 - \frac The efficiency is less than 100% because of the waste heat Q_c<0 unavoidably lost to the cold sink (and corresponding compression work put in) during the required recompression at the cold temperature before the power stroke of the engine can occur again. The ''theoretical'' maximum efficiency of any heat engine depends only on the temperatures it operates between. This efficiency is usually derived using an ideal imaginary heat engine such as the
Carnot heat engine A Carnot heat engine is a theoretical heat engine that operates on the Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded by Benoît Paul Émile ...
, although other engines using different cycles can also attain maximum efficiency. Mathematically, after a full cycle, the overall change of entropy is zero: \ \ \ \Delta S_h + \Delta S_c = \Delta_ S = 0 Note that \Delta S_h is positive because isothermal expansion in the power stroke increases the multiplicity of the working fluid while \Delta S_c is negative since recompression decreases the multiplicity. If the engine is ideal and runs reversibly, Q_h = T_h\Delta S_h and Q_c = T_c\Delta S_c , and thus. Q_h / T_h + Q_c / T_c = 0 , which gives Q_c /Q_h = -T_c / T_h and thus the Carnot limit for heat-engine efficiency, :\eta_\text = 1 - \frac where T_h is the
absolute temperature Thermodynamic temperature, also known as absolute temperature, is a physical quantity which measures temperature starting from absolute zero, the point at which particles have minimal thermal motion. Thermodynamic temperature is typically expres ...
of the hot source and T_c that of the cold sink, usually measured in
kelvin The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By de ...
s. The reasoning behind this being the maximal efficiency goes as follows. It is first assumed that if a more efficient heat engine than a Carnot engine is possible, then it could be driven in reverse as a heat pump. Mathematical analysis can be used to show that this assumed combination would result in a net decrease in
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
. Since, by the
second law of thermodynamics The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
, this is statistically improbable to the point of exclusion, the Carnot efficiency is a theoretical upper bound on the reliable efficiency of ''any'' thermodynamic cycle. Empirically, no heat engine has ever been shown to run at a greater efficiency than a Carnot cycle heat engine. Figure 2 and Figure 3 show variations on Carnot cycle efficiency with temperature. Figure 2 indicates how efficiency changes with an increase in the heat addition temperature for a constant compressor inlet temperature. Figure 3 indicates how the efficiency changes with an increase in the heat rejection temperature for a constant turbine inlet temperature.


Endo-reversible heat-engines

By its nature, any maximally efficient Carnot cycle must operate at an
infinitesimal In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
temperature gradient; this is because any transfer of heat between two bodies of differing temperatures is irreversible, therefore the Carnot efficiency expression applies only to the infinitesimal limit. The major problem is that the objective of most heat-engines is to output power, and infinitesimal power is seldom desired. A different measure of ideal heat-engine efficiency is given by considerations of endoreversible thermodynamics, where the system is broken into reversible subsystems, but with non reversible interactions between them. A classical example is the Curzon–Ahlborn engine,F. L. Curzon, B. Ahlborn (1975). "Efficiency of a Carnot Engine at Maximum Power Output". ''Am. J. Phys.'', Vol. 43, pp. 24. very similar to a Carnot engine, but where the thermal reservoirs at temperature T_h and T_c are allowed to be different from the temperatures of the substance going through the reversible Carnot cycle: T'_h and T'_c. The heat transfers between the reservoirs and the substance are considered as conductive (and irreversible) in the form dQ_/dt = \alpha (T_-T'_). In this case, a tradeoff has to be made between power output and efficiency. If the engine is operated very slowly, the heat flux is low, T\approx T' and the classical Carnot result is found :\eta = 1 - \frac, but at the price of a vanishing power output. If instead one chooses to operate the engine at its maximum output power, the efficiency becomes :\eta = 1 - \sqrt (Note: ''T'' in units of K or °R) This model does a better job of predicting how well real-world heat-engines can do (Callen 1985, see also endoreversible thermodynamics): As shown, the Curzon–Ahlborn efficiency much more closely models that observed.


History

Heat engines have been known since antiquity but were only made into useful devices at the time of the industrial revolution in the 18th century. They continue to be developed today.


Enhancements

Engineers have studied the various heat-engine cycles to improve the amount of usable work they could extract from a given power source. The Carnot cycle limit cannot be reached with any gas-based cycle, but engineers have found at least two ways to bypass that limit and one way to get better efficiency without bending any rules: #Increase the temperature difference in the heat engine. The simplest way to do this is to increase the hot side temperature, which is the approach used in modern combined-cycle
gas turbine A gas turbine or gas turbine engine is a type of Internal combustion engine#Continuous combustion, continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas gene ...
s. Unfortunately, physical limits (such as the melting point of the materials used to build the engine) and environmental concerns regarding NOx production (if the heat source is combustion with ambient air) restrict the maximum temperature on workable heat-engines. Modern gas turbines run at temperatures as high as possible within the range of temperatures necessary to maintain acceptable NOx output . Another way of increasing efficiency is to lower the output temperature. One new method of doing so is to use mixed chemical working fluids, then exploit the changing behavior of the mixtures. One of the most famous is the so-called Kalina cycle, which uses a 70/30 mix of
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
and water as its working fluid. This mixture allows the cycle to generate useful power at considerably lower temperatures than most other processes. #Exploit the
physical properties A physical property is any property of a physical system that is measurable. The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called ''physical ...
of the working fluid. The most common such exploitation is the use of water above the critical point (
supercritical water Supercritical water oxidation (SCWO) is a process that occurs in water at temperatures and pressures above a mixture's thermodynamic critical point (thermodynamics), critical point. Under these conditions water becomes a fluid with unique proper ...
). The behavior of fluids above their critical point changes radically, and with materials such as water and
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
it is possible to exploit those changes in behavior to extract greater thermodynamic efficiency from the heat engine, even if it is using a fairly conventional Brayton or Rankine cycle. A newer and very promising material for such applications is supercritical CO2. SO2 and
xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
have also been considered for such applications. Downsides include issues of corrosion and erosion, the different chemical behavior above and below the critical point, the needed high pressures and – in the case of sulfur dioxide and to a lesser extent carbon dioxide – toxicity. Among the mentioned compounds xenon is least suitable for use in a nuclear reactor due to the high neutron absorption cross section of almost all
isotopes of xenon Naturally occurring xenon (54Xe) consists of seven stable isotopes and two very long-lived isotopes. Double electron capture has been observed in 124Xe (half-life ) and double beta decay in 136Xe (half-life ), which are among the longest measured ...
, whereas carbon dioxide and water can also double as a
neutron moderator In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely ...
for a thermal spectrum reactor. #Exploit the
chemical properties A chemical property is any of a material property, material's properties that becomes evident during, or after, a chemical reaction; that is, any attribute that can be established only by changing a substance's chemical substance, chemical identit ...
of the working fluid. A fairly new and novel exploit is to use exotic working fluids with advantageous chemical properties. One such is
nitrogen dioxide Nitrogen dioxide is a chemical compound with the formula . One of several nitrogen oxides, nitrogen dioxide is a reddish-brown gas. It is a paramagnetic, bent molecule with C2v point group symmetry. Industrially, is an intermediate in the s ...
(NO2), a toxic component of smog, which has a natural dimer as di-nitrogen tetraoxide (N2O4). At low temperature, the N2O4 is compressed and then heated. The increasing temperature causes each N2O4 to break apart into two NO2 molecules. This lowers the molecular weight of the working fluid, which drastically increases the efficiency of the cycle. Once the NO2 has expanded through the turbine, it is cooled by the
heat sink A heat sink (also commonly spelled heatsink) is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is thermal management (electronics), ...
, which makes it recombine into N2O4. This is then fed back by the compressor for another cycle. Such species as aluminium bromide (Al2Br6), NOCl, and Ga2I6 have all been investigated for such uses. To date, their drawbacks have not warranted their use, despite the efficiency gains that can be realized.


Heat engine processes

Each process is one of the following: *
isothermal An isothermal process is a type of thermodynamic process in which the temperature ''T'' of a system remains constant: Δ''T'' = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the sys ...
(at constant temperature, maintained with heat added or removed from a heat source or sink) * isobaric (at constant pressure) * isometric/isochoric (at constant volume), also referred to as iso-volumetric * adiabatic (no heat is added or removed from the system during adiabatic process) *
isentropic An isentropic process is an idealized thermodynamic process that is both adiabatic and reversible. The work transfers of the system are frictionless, and there is no net transfer of heat or matter. Such an idealized process is useful in eng ...
(reversible adiabatic process, no heat is added or removed during isentropic process)


See also

*
Carnot heat engine A Carnot heat engine is a theoretical heat engine that operates on the Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded by Benoît Paul Émile ...
*
Cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
* Einstein refrigerator *
Heat pump A heat pump is a device that uses electricity to transfer heat from a colder place to a warmer place. Specifically, the heat pump transfers thermal energy using a heat pump and refrigeration cycle, cooling the cool space and warming the warm s ...
*
Reciprocating engine A reciprocating engine, more often known as a piston engine, is a heat engine that uses one or more reciprocating pistons to convert high temperature and high pressure into a rotating motion. This article describes the common features of al ...
for a general description of the mechanics of piston engines *
Stirling engine A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (ph ...
* Thermosynthesis * Timeline of heat engine technology


References

* * * {{Authority control Energy conversion Engine technology Engines Heating, ventilation, and air conditioning Thermodynamics