
Autocorrelation, sometimes known as serial correlation in the
discrete time
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled.
Discrete time
Discrete time views values of variables as occurring at distinct, separate "po ...
case, is the
correlation
In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics ...
of a
signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a
random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a
periodic signal obscured by
noise, or identifying the
missing fundamental frequency
A harmonic sound is said to have a missing fundamental, suppressed fundamental, or phantom fundamental when its overtones suggest a fundamental frequency but the sound lacks a component at the fundamental frequency itself.
The brain perceives the ...
in a signal implied by its
harmonic
A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', the ...
frequencies. It is often used in
signal processing for analyzing functions or series of values, such as
time domain signals.
Different fields of study define autocorrelation differently, and not all of these definitions are equivalent. In some fields, the term is used interchangeably with
autocovariance.
Unit root processes,
trend-stationary processes,
autoregressive processes, and
moving average process
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. The moving-average model specifies that the output variable is cross-correlated with a ...
es are specific forms of processes with autocorrelation.
Auto-correlation of stochastic processes
In
statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of ...
, the autocorrelation of a real or complex
random process is the
Pearson correlation
In statistics, the Pearson correlation coefficient (PCC, pronounced ) ― also known as Pearson's ''r'', the Pearson product-moment correlation coefficient (PPMCC), the bivariate correlation, or colloquially simply as the correlation coefficient ...
between values of the process at different times, as a function of the two times or of the time lag. Let
be a random process, and
be any point in time (
may be an
integer for a
discrete-time process or a
real number for a
continuous-time
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled.
Discrete time
Discrete time views values of variables as occurring at distinct, separate "po ...
process). Then
is the value (or
realization) produced by a given
run
Run(s) or RUN may refer to:
Places
* Run (island), one of the Banda Islands in Indonesia
* Run (stream), a stream in the Dutch province of North Brabant
People
* Run (rapper), Joseph Simmons, now known as "Reverend Run", from the hip-hop group ...
of the process at time
. Suppose that the process has
mean and
variance at time
, for each
. Then the definition of the auto-correlation function between times
and
is
[Kun Il Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications, Springer, 2018, ]
where
is the
expected value
In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
operator and the bar represents
complex conjugation
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
. Note that the expectation may not be
well defined.
Subtracting the mean before multiplication yields the auto-covariance function between times
and
:
[
Note that this expression is not well defined for all time series or processes, because the mean may not exist, or the variance may be zero (for a constant process) or infinite (for processes with distribution lacking well-behaved moments, such as certain types of ]power law
In statistics, a power law is a Function (mathematics), functional relationship between two quantities, where a Relative change and difference, relative change in one quantity results in a proportional relative change in the other quantity, inde ...
).
Definition for wide-sense stationary stochastic process
If is a wide-sense stationary process
In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Con ...
then the mean and the variance are time-independent, and further the autocovariance function depends only on the lag between and : the autocovariance depends only on the time-distance between the pair of values but not on their position in time. This further implies that the autocovariance and auto-correlation can be expressed as a function of the time-lag, and that this would be an even function
In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power seri ...
of the lag . This gives the more familiar forms for the auto-correlation function[
and the auto-covariance function:
In particular, note that
]
Normalization
It is common practice in some disciplines (e.g. statistics and time series analysis) to normalize the autocovariance function to get a time-dependent Pearson correlation coefficient. However, in other disciplines (e.g. engineering) the normalization is usually dropped and the terms "autocorrelation" and "autocovariance" are used interchangeably.
The definition of the auto-correlation coefficient of a stochastic process is[
If the function is well defined, its value must lie in the range ]