An asteroid is a
minor planet
According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor ...
—an object larger than a
meteoroid
A meteoroid ( ) is a small rocky or metallic body in outer space.
Meteoroids are distinguished as objects significantly smaller than ''asteroids'', ranging in size from grains to objects up to wide. Objects smaller than meteoroids are classifie ...
that is neither a
planet
A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
nor an identified
comet
A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
—that orbits within the
inner Solar System or is co-orbital with Jupiter (
Trojan asteroids). Asteroids are rocky, metallic, or icy bodies with no atmosphere, and are broadly classified into
C-type (
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
aceous),
M-type (
metal
A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
lic), or
S-type (
silica
Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant f ...
ceous). The size and shape of asteroids vary significantly, ranging from small rubble piles under a kilometer across to
Ceres, a
dwarf planet
A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
almost 1000 km in diameter. A body is classified as a comet, not an asteroid, if it shows a coma (tail) when warmed by solar radiation, although recent observations suggest a continuum between these types of bodies.
Of the roughly one million known asteroids, the greatest number are located between the orbits of
Mars
Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
and
Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
, approximately 2 to 4
AU from the Sun, in a region known as the main
asteroid belt
The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids ...
. The total mass of all the asteroids combined is only 3% that of
Earth's Moon. The majority of main belt asteroids follow slightly elliptical, stable orbits, revolving in the same direction as the Earth and taking from three to six years to complete a full circuit of the Sun.
Asteroids have historically been observed from Earth. The first close-up observation of an asteroid was made by the
Galileo spacecraft. Several dedicated missions to asteroids were subsequently launched by
NASA
The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
and
JAXA
The is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into o ...
, with plans for other missions in progress. NASA's ''
NEAR Shoemaker
''Near Earth Asteroid Rendezvous – Shoemaker'' (''NEAR Shoemaker''), renamed after its 1996 launch in honor of planetary scientist Eugene Merle Shoemaker, Eugene Shoemaker, was a Robotic spacecraft, robotic space probe designed by the Johns ...
'' studied
Eros, and ''
Dawn'' observed
Vesta and
Ceres. JAXA's missions ''
Hayabusa'' and ''
Hayabusa2'' studied and returned samples of
Itokawa and
Ryugu, respectively.
OSIRIS-REx studied
Bennu, collecting a sample in 2020 which was delivered back to Earth in 2023. NASA's ''
Lucy'', launched in 2021, is tasked with studying ten different asteroids, two from the
main belt and eight
Jupiter trojans. ''
Psyche'', launched October 2023, aims to study the metallic
asteroid Psyche. ESA's ''
Hera
In ancient Greek religion, Hera (; ; in Ionic Greek, Ionic and Homeric Greek) is the goddess of marriage, women, and family, and the protector of women during childbirth. In Greek mythology, she is queen of the twelve Olympians and Mount Oly ...
'', launched in October 2024, is intended study the results of the DART impact. CNSA's ''
Tianwen-2'' was launched in May 2025, to explore the
co-orbital near-Earth asteroid
469219 Kamoʻoalewa and the
active asteroid 311P/PanSTARRS and collecting samples of the regolith of Kamo'oalewa.
Near-Earth asteroids have the potential for catastrophic consequences if they strike Earth, with a notable example being the
Chicxulub impact, widely thought to have induced the
Cretaceous–Paleogene mass extinction. As an experiment to meet this danger, in September 2022 the
Double Asteroid Redirection Test spacecraft successfully altered the orbit of the non-threatening asteroid
Dimorphos by crashing into it.
Terminology
In 2006, the
International Astronomical Union
The International Astronomical Union (IAU; , UAI) is an international non-governmental organization (INGO) with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach, education, and developmen ...
(IAU) introduced the currently preferred broad term
small Solar System body, defined as an object in the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
that is neither a
planet
A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
, a
dwarf planet
A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
, nor a
natural satellite
A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriv ...
; this includes asteroids, comets, and more recently discovered classes. According to IAU, "the term 'minor planet' may still be used, but generally, 'Small Solar System Body' will be preferred."
Historically, the first discovered asteroid,
Ceres, was at first considered a new planet. It was followed by the discovery of other similar bodies, which with the equipment of the time appeared to be points of light like stars, showing little or no planetary disc, though readily distinguishable from stars due to their apparent motions. This prompted the astronomer Sir
William Herschel
Frederick William Herschel ( ; ; 15 November 1738 – 25 August 1822) was a German-British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline Herschel. Born in the Electorate of Hanover ...
to propose the term ''asteroid'', coined in Greek as ἀστεροειδής, or ''asteroeidēs'', meaning 'star-like, star-shaped', and derived from the Ancient Greek ''astēr'' 'star, planet'. In the early second half of the 19th century, the terms ''asteroid'' and ''planet'' (not always qualified as "minor") were still used interchangeably.
Traditionally, small bodies orbiting the Sun were classified as
comet
A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s, asteroids, or
meteoroid
A meteoroid ( ) is a small rocky or metallic body in outer space.
Meteoroids are distinguished as objects significantly smaller than ''asteroids'', ranging in size from grains to objects up to wide. Objects smaller than meteoroids are classifie ...
s, with anything smaller than one meter across being called a meteoroid. The term ''asteroid,'' never officially defined, can be informally used to mean "an irregularly shaped rocky body orbiting the Sun that does not qualify as a planet or a dwarf planet under the IAU definitions". The main difference between an asteroid and a comet is that a comet shows a coma (tail) due to
sublimation of its near-surface ices by solar radiation. A few objects were first classified as minor planets but later showed evidence of cometary activity. Conversely, some (perhaps all) comets are eventually depleted of their surface
volatile ices and become asteroid-like. A further distinction is that comets typically have more eccentric orbits than most asteroids; highly eccentric asteroids are probably dormant or extinct comets.
The minor planets beyond Jupiter's orbit are sometimes also called "asteroids", especially in popular presentations. However, it is becoming increasingly common for the term ''asteroid'' to be restricted to minor planets of the inner Solar System.
Therefore, this article will restrict itself for the most part to the classical asteroids: objects of the
asteroid belt
The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids ...
,
Jupiter trojans, and
near-Earth object
A near-Earth object (NEO) is any small Solar System body orbiting the Sun whose closest approach to the Sun ( perihelion) is less than 1.3 times the Earth–Sun distance (astronomical unit, AU). This definition applies to the object's orbit a ...
s.
For almost two centuries after the discovery of
Ceres in 1801, all known asteroids spent most of their time at or within the orbit of Jupiter, though a few, such as
944 Hidalgo, ventured farther for part of their orbit. Starting in 1977 with
2060 Chiron, astronomers discovered small bodies that permanently resided further out than Jupiter, now called
centaurs. In 1992,
15760 Albion was discovered, the first object beyond the orbit of Neptune (other than
Pluto
Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of Trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Su ...
); soon large numbers of similar objects were observed, now called
trans-Neptunian object. Further out are
Kuiper-belt objects,
scattered-disc objects, and the much more distant
Oort cloud, hypothesized to be the main reservoir of dormant comets. They inhabit the cold outer reaches of the Solar System where ices remain solid and comet-like bodies exhibit little cometary activity; if centaurs or trans-Neptunian objects were to venture close to the Sun, their volatile ices would
sublimate, and traditional approaches would classify them as comets.
The
Kuiper-belt bodies are called "objects" partly to avoid the need to classify them as asteroids or comets.
They are thought to be predominantly comet-like in composition, though some may be more akin to asteroids. Most do not have the highly eccentric orbits associated with comets, and the ones so far discovered are larger than traditional
comet nuclei
The nucleus is the solid, central part of a comet, formerly termed a ''dirty snowball'' or an ''icy dirtball''. A cometary nucleus is composed of Rock (geology), rock, dust, and frozen gases. When heated by the Sun, the gases Sublimation (physi ...
. Other recent observations, such as the analysis of the cometary dust collected by the
''Stardust'' probe, are increasingly blurring the distinction between comets and asteroids,
suggesting "a continuum between asteroids and comets" rather than a sharp dividing line.
In 2006, the IAU created the class of
dwarf planet
A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
s for the largest minor planets—those massive enough to have become ellipsoidal under their own gravity. Only the largest object in the asteroid belt has been placed in this category:
Ceres, at about across.
History of observations
Despite their large numbers, asteroids are a relatively recent discovery, with the first one—Ceres—only being identified in 1801.
Only one asteroid,
4 Vesta
Vesta (minor-planet designation: 4 Vesta) is one of the largest objects in the asteroid belt, with a mean diameter of . It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta (mytho ...
, which has a relatively
reflective surface, is normally visible to the naked eye in dark skies when it is favorably positioned. Rarely, small asteroids passing close to Earth may be briefly visible to the naked eye.
[ , the Minor Planet Center had data on 1,199,224 minor planets in the inner and outer Solar System, of which about 614,690 had enough information to be given numbered designations.][
]
Discovery of Ceres
In 1772, German astronomer Johann Elert Bode, citing Johann Daniel Titius, published a numerical procession known as the Titius–Bode law (now discredited). Except for an unexplained gap between Mars and Jupiter, Bode's formula seemed to predict the orbits of the known planets. He wrote the following explanation for the existence of a "missing planet":
This latter point seems in particular to follow from the astonishing relation which the known six planets observe in their distances from the Sun. Let the distance from the Sun to Saturn be taken as 100, then Mercury is separated by 4 such parts from the Sun. Venus is 4 + 3 = 7. The Earth 4 + 6 = 10. Mars 4 + 12 = 16. Now comes a gap in this so orderly progression. After Mars there follows a space of 4 + 24 = 28 parts, in which no planet has yet been seen. Can one believe that the Founder of the universe had left this space empty? Certainly not. From here we come to the distance of Jupiter by 4 + 48 = 52 parts, and finally to that of Saturn by 4 + 96 = 100 parts.
Bode's formula predicted another planet would be found with an orbital radius near 2.8 astronomical unit
The astronomical unit (symbol: au or AU) is a unit of length defined to be exactly equal to . Historically, the astronomical unit was conceived as the average Earth-Sun distance (the average of Earth's aphelion and perihelion), before its m ...
s (AU), or 420 million km, from the Sun. The Titius–Bode law got a boost with William Herschel
Frederick William Herschel ( ; ; 15 November 1738 – 25 August 1822) was a German-British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline Herschel. Born in the Electorate of Hanover ...
's discovery of Uranus
Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a Supercritical fluid, supercritical phase of matter, which astronomy calls "ice" or Volatile ( ...
near the predicted distance for a planet beyond Saturn
Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
. In 1800, a group headed by Franz Xaver von Zach, editor of the German astronomical journal ''Monatliche Correspondenz'' (Monthly Correspondence), sent requests to 24 experienced astronomers (whom he dubbed the " celestial police"), asking that they combine their efforts and begin a methodical search for the expected planet. Although they did not discover Ceres, they later found the asteroids 2 Pallas, 3 Juno and 4 Vesta
Vesta (minor-planet designation: 4 Vesta) is one of the largest objects in the asteroid belt, with a mean diameter of . It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta (mytho ...
.
One of the astronomers selected for the search was Giuseppe Piazzi, a Catholic priest
A priest is a religious leader authorized to perform the sacred rituals of a religion, especially as a mediatory agent between humans and one or more deity, deities. They also have the authority or power to administer religious rites; in parti ...
at the Academy of Palermo, Sicily. Before receiving his invitation to join the group, Piazzi discovered Ceres on 1 January 1801. He was searching for "the 87th tarof the Catalogue of the Zodiacal stars of Mr la Caille", but found that "it was preceded by another". Instead of a star, Piazzi had found a moving star-like object, which he first thought was a comet:
The light was a little faint, and of the colour of Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
, but similar to many others which generally are reckoned of the eighth magnitude. Therefore I had no doubt of its being any other than a fixed star. ..The evening of the third, my suspicion was converted into certainty, being assured it was not a fixed star. Nevertheless before I made it known, I waited till the evening of the fourth, when I had the satisfaction to see it had moved at the same rate as on the preceding days.
Piazzi observed Ceres a total of 24 times, the final time on 11 February 1801, when illness interrupted his work. He announced his discovery on 24 January 1801 in letters to only two fellow astronomers, his compatriot Barnaba Oriani of Milan and Bode in Berlin. He reported it as a comet but "since its movement is so slow and rather uniform, it has occurred to me several times that it might be something better than a comet". In April, Piazzi sent his complete observations to Oriani, Bode, and French astronomer Jérôme Lalande
Joseph Jérôme Lefrançois de Lalande (; 11 July 1732 – 4April 1807) was a French astronomer, freemason and writer. He is known for having estimated a precise value of the astronomical unit (the distance from the Earth to the Sun) using measu ...
. The information was published in the September 1801 issue of the ''Monatliche Correspondenz''.
By this time, the apparent position of Ceres had changed (mostly due to Earth's motion around the Sun), and was too close to the Sun's glare for other astronomers to confirm Piazzi's observations. Toward the end of the year, Ceres should have been visible again, but after such a long time it was difficult to predict its exact position. To recover Ceres, mathematician Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
, then 24 years old, developed an efficient method of orbit determination. In a few weeks, he predicted the path of Ceres and sent his results to von Zach. On 31 December 1801, von Zach and fellow celestial policeman Heinrich W. M. Olbers found Ceres near the predicted position and thus recovered it. At 2.8 AU from the Sun, Ceres appeared to fit the Titius–Bode law almost perfectly; however, Neptune, once discovered in 1846, was 8 AU closer than predicted, leading most astronomers to conclude that the law was a coincidence. Piazzi named the newly discovered object ''Ceres Ferdinandea,'' "in honor of the patron goddess of Sicily and of King Ferdinand of Bourbon".[
]
Further search
Three other asteroids ( 2 Pallas, 3 Juno, and 4 Vesta
Vesta (minor-planet designation: 4 Vesta) is one of the largest objects in the asteroid belt, with a mean diameter of . It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta (mytho ...
) were discovered by von Zach's group over the next few years, with Vesta found in 1807. No new asteroids were discovered until 1845. Amateur astronomer Karl Ludwig Hencke started his searches of new asteroids in 1830, and fifteen years later, while looking for Vesta, he found the asteroid later named 5 Astraea. It was the first new asteroid discovery in 38 years. Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
was given the honor of naming the asteroid. After this, other astronomers joined; 15 asteroids were found by the end of 1851. In 1868, when James Craig Watson discovered the 100th asteroid, the French Academy of Sciences
The French Academy of Sciences (, ) is a learned society, founded in 1666 by Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific method, scientific research. It was at the forefron ...
engraved the faces of Karl Theodor Robert Luther, John Russell Hind, and Hermann Goldschmidt, the three most successful asteroid-hunters at that time, on a commemorative medallion marking the event.
In 1891, Max Wolf
Maximilian Franz Joseph Cornelius Wolf (21 June 1863 – 3 October 1932) was a German astronomer and a pioneer in the field of astrophotography. He was the chairman of astronomy at the University of Heidelberg and director of the Heidelberg-K� ...
pioneered the use of astrophotography to detect asteroids, which appeared as short streaks on long-exposure photographic plates. This dramatically increased the rate of detection compared with earlier visual methods: Wolf alone discovered 248 asteroids, beginning with 323 Brucia, whereas only slightly more than 300 had been discovered up to that point. It was known that there were many more, but most astronomers did not bother with them, some calling them "vermin of the skies", a phrase variously attributed to Eduard Suess and Edmund Weiss. Even a century later, only a few thousand asteroids were identified, numbered and named.
19th and 20th centuries
In the past, asteroids were discovered by a four-step process. First, a region of the sky was photographed by a wide-field telescope
A telescope is a device used to observe distant objects by their emission, Absorption (electromagnetic radiation), absorption, or Reflection (physics), reflection of electromagnetic radiation. Originally, it was an optical instrument using len ...
or astrograph. Pairs of photographs were taken, typically one hour apart. Multiple pairs could be taken over a series of days. Second, the two films or plates of the same region were viewed under a stereoscope. A body in orbit around the Sun would move slightly between the pair of films. Under the stereoscope, the image of the body would seem to float slightly above the background of stars. Third, once a moving body was identified, its location would be measured precisely using a digitizing microscope. The location would be measured relative to known star locations.
These first three steps do not constitute asteroid discovery: the observer has only found an apparition, which gets a provisional designation, made up of the year of discovery, a letter representing the half-month of discovery, and finally a letter and a number indicating the discovery's sequential number (example: ). The last step is sending the locations and time of observations to the Minor Planet Center, where computer programs determine whether an apparition ties together earlier apparitions into a single orbit. If so, the object receives a catalogue number and the observer of the first apparition with a calculated orbit is declared the discoverer, and granted the honor of naming the object subject to the approval of the International Astronomical Union
The International Astronomical Union (IAU; , UAI) is an international non-governmental organization (INGO) with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach, education, and developmen ...
.
Naming
By 1851, the Royal Astronomical Society
The Royal Astronomical Society (RAS) is a learned society and charitable organisation, charity that encourages and promotes the study of astronomy, planetary science, solar-system science, geophysics and closely related branches of science. Its ...
decided that asteroids were being discovered at such a rapid rate that a different system was needed to categorize or name asteroids. In 1852, when de Gasparis discovered the twentieth asteroid, Benjamin Valz gave it a name and a number designating its rank among asteroid discoveries, 20 Massalia. Sometimes asteroids were discovered and not seen again. So, starting in 1892, new asteroids were listed by the year and a capital letter indicating the order in which the asteroid's orbit was calculated and registered within that specific year. For example, the first two asteroids discovered in 1892 were labeled 1892A and 1892B. However, there were not enough letters in the alphabet for all of the asteroids discovered in 1893, so 1893Z was followed by 1893AA. A number of variations of these methods were tried, including designations that included year plus a Greek letter in 1914. A simple chronological numbering system was established in 1925.
Currently all newly discovered asteroids receive a provisional designation (such as ) consisting of the year of discovery and an alphanumeric code indicating the half-month of discovery and the sequence within that half-month. Once an asteroid's orbit has been confirmed, it is given a number, and later may also be given a name (e.g. ). The formal naming convention uses parentheses around the number—e.g. (433) Eros—but dropping the parentheses is quite common. Informally, it is also common to drop the number altogether, or to drop it after the first mention when a name is repeated in running text.[ In addition, names can be proposed by the asteroid's discoverer, within guidelines established by the International Astronomical Union.][
]
Symbols
The first asteroids to be discovered were assigned iconic symbols like the ones traditionally used to designate the planets. By 1852 there were two dozen asteroid symbols, which often occurred in multiple variants.[
In 1851, after the fifteenth asteroid, Eunomia, had been discovered, Johann Franz Encke made a major change in the upcoming 1854 edition of the '' Berliner Astronomisches Jahrbuch'' (BAJ, ''Berlin Astronomical Yearbook''). He introduced a disk (circle), a traditional symbol for a star, as the generic symbol for an asteroid. The circle was then numbered in order of discovery to indicate a specific asteroid. The numbered-circle convention was quickly adopted by astronomers, and the next asteroid to be discovered ( 16 Psyche, in 1852) was the first to be designated in that way at the time of its discovery. However, Psyche was given an iconic symbol as well, as were a few other asteroids discovered over the next few years. 20 Massalia was the first asteroid that was not assigned an iconic symbol, and no iconic symbols were created after the 1855 discovery of 37 Fides.][
]
Formation
Many asteroids are the shattered remnants of planetesimals, bodies within the young Sun's solar nebula that never grew large enough to become planet
A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
s.[ It is thought that planetesimals in the asteroid belt evolved much like the rest of objects in the solar nebula until Jupiter neared its current mass, at which point excitation from orbital resonances with Jupiter ejected over 99% of planetesimals in the belt. Simulations and a discontinuity in spin rate and spectral properties suggest that asteroids larger than approximately in diameter accreted during that early era, whereas smaller bodies are fragments from collisions between asteroids during or after the Jovian disruption. Ceres and Vesta grew large enough to melt and differentiate, with heavy metallic elements sinking to the core, leaving rocky minerals in the crust.]
In the Nice model, many Kuiper-belt objects are captured in the outer asteroid belt, at distances greater than 2.6 AU. Most were later ejected by Jupiter, but those that remained may be the D-type asteroid
D-type asteroids have a very low albedo and a featureless reddish spectrum. It has been suggested that they have a composition of organic-rich silicates, carbon and anhydrous silicates, possibly with water ice in their interiors. D-type asteroids ...
s, and possibly include Ceres.
Distribution within the Solar System
Various dynamical groups of asteroids have been discovered orbiting in the inner Solar System. Their orbits are perturbed by the gravity of other bodies in the Solar System and by the Yarkovsky effect. Significant populations include:
Asteroid belt
The majority of known asteroids orbit within the asteroid belt between the orbits of Mars
Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
and Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
, generally in relatively low-eccentricity
Eccentricity or eccentric may refer to:
* Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal"
Mathematics, science and technology Mathematics
* Off-Centre (geometry), center, in geometry
* Eccentricity (g ...
(i.e. not very elongated) orbits. This belt is estimated to contain between 1.1 and 1.9 million asteroids larger than in diameter, and millions of smaller ones. These asteroids may be remnants of the protoplanetary disk, and in this region the accretion of planetesimals into planets during the formative period of the Solar System was prevented by large gravitational perturbations by Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
.
Contrary to popular imagery, the asteroid belt is mostly empty. The asteroids are spread over such a large volume that reaching an asteroid without aiming carefully would be improbable. Nonetheless, hundreds of thousands of asteroids are currently known, and the total number ranges in the millions or more, depending on the lower size cutoff. Over 200 asteroids are known to be larger than 100 km, and a survey in the infrared wavelengths has shown that the asteroid belt has between 700,000 and 1.7 million asteroids with a diameter of 1 km or more. The absolute magnitudes of most of the known asteroids are between 11 and 19, with the median at about 16.
The total mass of the asteroid belt is estimated to be kg, which is just 3% of the mass of the Moon; the mass of the Kuiper Belt and Scattered Disk is over 100 times as large. The four largest objects, Ceres, Vesta, Pallas, and Hygiea, account for maybe 62% of the belt's total mass, with 39% accounted for by Ceres alone.
Trojans
Trojans are populations that share an orbit with a larger planet or moon, but do not collide with it because they orbit in one of the two Lagrangian point
In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium (mechanics), equilibrium for small-mass objects under the gravity, gravitational influence of two massive orbit, orbiting b ...
s of stability, and , which lie 60° ahead of and behind the larger body.
In the Solar System, most known trojans share the orbit of Jupiter. They are divided into the Greek camp at (ahead of Jupiter) and the Trojan camp at (trailing Jupiter). More than a million Jupiter trojans larger than one kilometer are thought to exist, of which more than 7,000 are currently catalogued. In other planetary orbits only nine Mars trojans, 28 Neptune trojans, two Uranus trojans, and two Earth trojans, have been found to date. A temporary Venus trojan is also known. Numerical orbital dynamics stability simulations indicate that Saturn and Uranus probably do not have any primordial trojans.
Near-Earth asteroids
Near-Earth asteroids, or NEAs, are asteroids that have orbits that pass close to that of Earth. Asteroids that actually cross Earth's orbital path are known as ''Earth-crossers''. , a total of 28,772 near-Earth asteroids were known; 878 have a diameter of one kilometer or larger.
A small number of NEAs are extinct comets that have lost their volatile surface materials, although having a faint or intermittent comet-like tail does not necessarily result in a classification as a near-Earth comet, making the boundaries somewhat fuzzy. The rest of the near-Earth asteroids are driven out of the asteroid belt by gravitational interactions with Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
.
Many asteroids have natural satellite
A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriv ...
s ( minor-planet moons). , there were 85 NEAs known to have at least one moon, including three known to have two moons. The asteroid 3122 Florence, one of the largest potentially hazardous asteroids with a diameter of , has two moons measuring across, which were discovered by radar imaging during the asteroid's 2017 approach to Earth.
Near-Earth asteroids are divided into groups based on their semi-major axis (a), perihelion distance (q), and aphelion distance (Q):
* The '' Atiras'' or ''Apoheles'' have orbits strictly inside Earth's orbit: an Atira asteroid's aphelion distance (Q) is smaller than Earth's perihelion distance (0.983 AU). That is, , which implies that the asteroid's semi-major axis is also less than 0.983 AU.
* The '' Atens'' have a semi-major axis of less than 1 AU and cross Earth's orbit. Mathematically, and . (0.983 AU is Earth's perihelion distance.)
* The '' Apollos'' have a semi-major axis of more than 1 AU and cross Earth's orbit. Mathematically, and . (1.017 AU is Earth's aphelion distance.)
* The '' Amors'' have orbits strictly outside Earth's orbit: an Amor asteroid's perihelion distance (q) is greater than Earth's aphelion distance (1.017 AU). Amor asteroids are also near-earth objects so . In summary, . (This implies that the asteroid's semi-major axis (a) is also larger than 1.017 AU.) Some Amor asteroid orbits cross the orbit of Mars.
Martian moons
It is unclear whether Martian moons Phobos and Deimos are captured asteroids or were formed due to impact event on Mars.[Burns, Joseph A. (1992). "Contradictory Clues as to the Origin of the Martian Moons" in ''Mars'', H. H. Kieffer et al., eds., Tucson: University of Arizona Press, Tucson] Phobos and Deimos both have much in common with carbonaceous C-type asteroid
C-type (carbonaceous ) asteroids are the most common variety, forming around 75% of known asteroids. They are volatile-rich and distinguished by a very low albedo because their composition includes a large amount of carbon, in addition to rocks ...
s, with spectra, albedo
Albedo ( ; ) is the fraction of sunlight that is Diffuse reflection, diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects ...
, and density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
very similar to those of C- or D-type asteroids. Based on their similarity, one hypothesis is that both moons may be captured main-belt asteroids
The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroi ...
.[Landis, Geoffrey A.; "Origin of Martian Moons from Binary Asteroid Dissociation", ''American Association for the Advancement of Science Annual Meeting''; Boston, MA, 2001]
abstract
/ref> Both moons have very circular orbits which lie almost exactly in Mars's equatorial plane, and hence a capture origin requires a mechanism for circularizing the initially highly eccentric orbit, and adjusting its inclination into the equatorial plane, most probably by a combination of atmospheric drag and tidal forces, although it is not clear whether sufficient time was available for this to occur for Deimos. Capture also requires dissipation of energy. The current Martian atmosphere is too thin to capture a Phobos-sized object by atmospheric braking. Geoffrey A. Landis has pointed out that the capture could have occurred if the original body was a binary asteroid that separated under tidal forces.
Phobos could be a second-generation Solar System object that coalesced in orbit after Mars formed, rather than forming concurrently out of the same birth cloud as Mars.
Another hypothesis is that Mars was once surrounded by many Phobos- and Deimos-sized bodies, perhaps ejected into orbit around it by a collision with a large planetesimal.[Craddock, Robert A.; (1994); "The Origin of Phobos and Deimos", ''Abstracts of the 25th Annual Lunar and Planetary Science Conference, held in Houston, TX, 14–18 March 1994'', p. 293] The high porosity of the interior of Phobos (based on the density of 1.88 g/cm3, voids are estimated to comprise 25 to 35 percent of Phobos's volume) is inconsistent with an asteroidal origin. Observations of Phobos in the thermal infrared suggest a composition containing mainly phyllosilicates
Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust.
In mineralogy, the crystalline forms of silica (silicon dio ...
, which are well known from the surface of Mars. The spectra are distinct from those of all classes of chondrite
A chondrite is a stony (non-metallic) meteorite that has not been modified by either melting or planetary differentiation, differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar Syste ...
meteorites, again pointing away from an asteroidal origin. Both sets of findings support an origin of Phobos from material ejected by an impact on Mars that reaccreted in Martian orbit, similar to the prevailing theory for the origin of Earth's moon.
Characteristics
Size distribution
Asteroids vary greatly in size, from almost for the largest down to rocks just 1 meter across, below which an object is classified as a meteoroid
A meteoroid ( ) is a small rocky or metallic body in outer space.
Meteoroids are distinguished as objects significantly smaller than ''asteroids'', ranging in size from grains to objects up to wide. Objects smaller than meteoroids are classifie ...
. The three largest are very much like miniature planets: they are roughly spherical, have at least partly differentiated interiors, and are thought to be surviving protoplanet
A protoplanet is a large planetary embryo that originated within a protoplanetary disk and has undergone internal melting to produce a differentiated interior. Protoplanets are thought to form out of kilometer-sized planetesimals that gravitatio ...
s. The vast majority, however, are much smaller and are irregularly shaped; they are thought to be either battered planetesimals or fragments of larger bodies.
The dwarf planet
A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
Ceres is by far the largest asteroid, with a diameter of . The next largest are 4 Vesta
Vesta (minor-planet designation: 4 Vesta) is one of the largest objects in the asteroid belt, with a mean diameter of . It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta (mytho ...
and 2 Pallas, both with diameters of just over . Vesta is the brightest of the four main-belt asteroids that can, on occasion, be visible to the naked eye. On some rare occasions, a near-Earth asteroid may briefly become visible without technical aid; see 99942 Apophis.
The mass of all the objects of the asteroid belt
The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids ...
, lying between the orbits of Mars
Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
and Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
, is estimated to be , ≈ 3.25% of the mass of the Moon. Of this, Ceres comprises , about 40% of the total. Adding in the next three most massive objects, Vesta (11%), Pallas (8.5%), and Hygiea (3–4%), brings this figure up to a bit over 60%, whereas the next seven most-massive asteroids bring the total up to 70%. The number of asteroids increases rapidly as their individual masses decrease.
The number of asteroids decreases markedly with increasing size. Although the size distribution generally follows a power law
In statistics, a power law is a Function (mathematics), functional relationship between two quantities, where a Relative change and difference, relative change in one quantity results in a relative change in the other quantity proportional to the ...
, there are 'bumps' at about and , where more asteroids than expected from such a curve are found. Most asteroids larger than approximately 120 km in diameter are primordial (surviving from the accretion epoch), whereas most smaller asteroids are products of fragmentation of primordial asteroids. The primordial population of the main belt was probably 200 times what it is today.
Largest asteroids
Three largest objects in the asteroid belt, Ceres, Vesta, and Pallas, are intact protoplanet
A protoplanet is a large planetary embryo that originated within a protoplanetary disk and has undergone internal melting to produce a differentiated interior. Protoplanets are thought to form out of kilometer-sized planetesimals that gravitatio ...
s that share many characteristics common to planets, and are atypical compared to the majority of irregularly shaped asteroids. The fourth-largest asteroid, Hygiea, appears nearly spherical although it may have an undifferentiated interior, like the majority of asteroids. The four largest asteroids constitute half the mass of the asteroid belt.
Ceres is the only asteroid that appears to have a plastic
Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
shape under its own gravity and hence the only one that is a dwarf planet
A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
.[ It has a much higher absolute magnitude than the other asteroids, of around 3.32,][ and may possess a surface layer of ice.] Like the planets, Ceres is differentiated: it has a crust, a mantle and a core. No meteorites from Ceres have been found on Earth.[
Vesta, too, has a differentiated interior, though it formed inside the Solar System's frost line, and so is devoid of water; its composition is mainly of basaltic rock with minerals such as olivine. Aside from the large crater at its southern pole, Rheasilvia, Vesta also has an ellipsoidal shape. Vesta is the parent body of the Vestian family and other V-type asteroids, and is the source of the HED meteorites, which constitute 5% of all meteorites on Earth.
Pallas is unusual in that, like ]Uranus
Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a Supercritical fluid, supercritical phase of matter, which astronomy calls "ice" or Volatile ( ...
, it rotates on its side, with its axis of rotation tilted at high angles to its orbital plane. Its composition is similar to that of Ceres: high in carbon and silicon, and perhaps partially differentiated.[ Pallas is the parent body of the Palladian family of asteroids.
Hygiea is the largest carbonaceous asteroid][ and, unlike the other largest asteroids, lies relatively close to the plane of the ecliptic. It is the largest member and presumed parent body of the Hygiean family of asteroids. Because there is no sufficiently large crater on the surface to be the source of that family, as there is on Vesta, it is thought that Hygiea may have been completely disrupted in the collision that formed the Hygiean family and recoalesced after losing a bit less than 2% of its mass. Observations taken with the Very Large Telescope's ]SPHERE
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
imager in 2017 and 2018, revealed that Hygiea has a nearly spherical shape, which is consistent both with it being in hydrostatic equilibrium, or formerly being in hydrostatic equilibrium, or with being disrupted and recoalescing.[
Internal differentiation of large asteroids is possibly related to their lack of ]natural satellite
A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriv ...
s, as satellites of main belt asteroids are mostly believed to form from collisional disruption, creating a rubble pile structure.
Rotation
Measurements of the rotation rates of large asteroids in the asteroid belt show that there is an upper limit. Very few asteroids with a diameter larger than 100 meters have a rotation period less than 2.2 hours. For asteroids rotating faster than approximately this rate, the inertial force at the surface is greater than the gravitational force, so any loose surface material would be flung out. However, a solid object should be able to rotate much more rapidly. This suggests that most asteroids with a diameter over 100 meters are rubble piles formed through the accumulation of debris after collisions between asteroids.[
]
Color
Asteroids become darker and redder with age due to space weathering. However evidence suggests most of the color change occurs rapidly, in the first hundred thousand years, limiting the usefulness of spectral measurement for determining the age of asteroids.
Surface features
Except for the " big four" (Ceres, Pallas, Vesta, and Hygiea), asteroids are likely to be broadly similar in appearance, if irregular in shape. 253 Mathilde is a rubble pile saturated with craters with diameters the size of the asteroid's radius. Earth-based observations of 511 Davida, one of the largest asteroids after the big four, reveal a similarly angular profile, suggesting it is also saturated with radius-size craters. Medium-sized asteroids such as Mathilde and 243 Ida, that have been observed up close, also reveal a deep regolith covering the surface. Of the big four, Pallas and Hygiea are practically unknown. Vesta has compression fractures encircling a radius-size crater at its south pole but is otherwise a spheroid
A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface (mathematics), surface obtained by Surface of revolution, rotating an ellipse about one of its principal axes; in other words, an ellipsoid with t ...
.
'' Dawn spacecraft'' revealed that Ceres has a heavily cratered surface, but with fewer large craters than expected. Models based on the formation of the current asteroid belt had suggested Ceres should possess 10 to 15 craters larger than in diameter. The largest confirmed crater on Ceres, Kerwan Basin, is across. The most likely reason for this is viscous relaxation of the crust slowly flattening out larger impacts.
Composition
Asteroids are classified by their characteristic emission spectra, with the majority falling into three main groups: C-type, M-type, and S-type. These describe carbonaceous ( carbon-rich), metal
A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
lic, and silica
Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant f ...
ceous (stony) compositions, respectively. The physical composition of asteroids is varied and in most cases poorly understood. Ceres appears to be composed of a rocky core covered by an icy mantle; Vesta is thought to have a nickel-iron core, olivine
The mineral olivine () is a magnesium iron Silicate minerals, silicate with the chemical formula . It is a type of Nesosilicates, nesosilicate or orthosilicate. The primary component of the Earth's upper mantle (Earth), upper mantle, it is a com ...
mantle, and basaltic crust. Thought to be the largest undifferentiated asteroid, 10 Hygiea seems to have a uniformly primitive composition of carbonaceous chondrite, but it may actually be a differentiated asteroid that was globally disrupted by an impact and then reassembled. Other asteroids appear to be the remnant cores or mantles of proto-planets, high in rock and metal. Most small asteroids are believed to be piles of rubble held together loosely by gravity, although the largest are probably solid. Some asteroids have moons or are co-orbiting binaries: rubble piles, moons, binaries, and scattered asteroid families are thought to be the results of collisions that disrupted a parent asteroid, or possibly a planet
A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
.
In the main asteroid belt, there appear to be two primary populations of asteroid: a dark, volatile-rich population, consisting of the C-type and P-type asteroids, with albedos less than 0.10 and densities under , and a dense, volatile-poor population, consisting of the S-type and M-type asteroids, with albedos over 0.15 and densities greater than 2.7. Within these populations, larger asteroids are denser, presumably due to compression. There appears to be minimal macro-porosity (interstitial vacuum) in the score of asteroids with masses greater than .[P. Vernazza et al. (2021) VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. ''Astronomy & Astrophysics'' 54, A56]
Composition is calculated from three primary sources: albedo
Albedo ( ; ) is the fraction of sunlight that is Diffuse reflection, diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects ...
, surface spectrum, and density. The last can only be determined accurately by observing the orbits of moons the asteroid might have. So far, every asteroid with moons has turned out to be a rubble pile, a loose conglomeration of rock and metal that may be half empty space by volume. The investigated asteroids are as large as 280 km in diameter, and include 121 Hermione (268×186×183 km), and 87 Sylvia (384×262×232 km). Few asteroids are larger than 87 Sylvia, none of them have moons. The fact that such large asteroids as Sylvia may be rubble piles, presumably due to disruptive impacts, has important consequences for the formation of the Solar System: computer simulations of collisions involving solid bodies show them destroying each other as often as merging, but colliding rubble piles are more likely to merge. This means that the cores of the planets could have formed relatively quickly.
Water
Scientists hypothesize that some of the first water brought to Earth was delivered by asteroid impacts after the collision that produced the Moon
The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
. In 2009, the presence of water ice was confirmed on the surface of 24 Themis using NASA's Infrared Telescope Facility. The surface of the asteroid appears completely covered in ice. As this ice layer is sublimating, it may be getting replenished by a reservoir of ice under the surface. Organic compounds were also detected on the surface. The presence of ice on 24 Themis makes the initial theory plausible.
In October 2013, water was detected on an extrasolar body for the first time, on an asteroid orbiting the white dwarf
A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
GD 61. On 22 January 2014, European Space Agency
The European Space Agency (ESA) is a 23-member International organization, international organization devoted to space exploration. With its headquarters in Paris and a staff of around 2,547 people globally as of 2023, ESA was founded in 1975 ...
(ESA) scientists reported the detection, for the first definitive time, of water vapor
Water vapor, water vapour, or aqueous vapor is the gaseous phase of Properties of water, water. It is one Phase (matter), state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from th ...
on Ceres, the largest object in the asteroid belt. The detection was made by using the far-infrared abilities of the Herschel Space Observatory. The finding is unexpected because comets, not asteroids, are typically considered to "sprout jets and plumes". According to one of the scientists, "The lines are becoming more and more blurred between comets and asteroids."
Findings have shown that solar wind
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
s can react with the oxygen in the upper layer of the asteroids and create water. It has been estimated that "every cubic metre of irradiated rock could contain up to 20 litres"; study was conducted using an atom probe tomography, numbers are given for the Itokawa S-type asteroid.
Acfer 049, a meteorite discovered in Algeria in 1990, was shown in 2019 to have an ultraporous lithology (UPL): porous texture that could be formed by removal of ice that filled these pores, this suggests that UPL "represent fossils of primordial ice".
Organic compounds
Asteroids contain traces of amino acid
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
s and other organic compounds, and some speculate that asteroid impacts may have seeded the early Earth with the chemicals necessary to initiate life, or may have even brought life itself to Earth (an event called " panspermia"). In August 2011, a report, based on NASA
The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
studies with meteorite
A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s found on Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
, was published suggesting DNA and RNA
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
components ( adenine, guanine
Guanine () (symbol G or Gua) is one of the four main nucleotide bases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, and thymine ( uracil in RNA). In DNA, guanine is paired with cytosine. The guanine nucleoside ...
and related organic molecules) may have been formed on asteroids and comet
A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
s in outer space.
In November 2019, scientists reported detecting, for the first time, sugar molecules, including ribose, in meteorite
A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s, suggesting that chemical processes on asteroids can produce some fundamentally essential bio-ingredients important to life
Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
, and supporting the notion of an RNA world prior to a DNA-based origin of life
Abiogenesis is the natural process by which life arises from abiotic component, non-living matter, such as simple organic compounds. The prevailing scientific hypothesis is that the transition from non-living to organism, living entities on ...
on Earth, and possibly, as well, the notion of panspermia.
Classification
Asteroids are commonly categorized according to two criteria: the characteristics of their orbits, and features of their reflectance spectrum
A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
.
Orbital classification
Many asteroids have been placed in groups and families based on their orbital characteristics. Apart from the broadest divisions, it is customary to name a group of asteroids after the first member of that group to be discovered. Groups are relatively loose dynamical associations, whereas families are tighter and result from the catastrophic break-up of a large parent asteroid sometime in the past.[ Families are more common and easier to identify within the main asteroid belt, but several small families have been reported among the Jupiter trojans.] Main belt families were first recognized by Kiyotsugu Hirayama in 1918 and are often called Hirayama families A Hirayama family of asteroids is a group of minor planets that share similar orbital elements, such as semimajor axis, eccentricity (orbit), eccentricity, and orbital inclination. The members of the families are thought to be fragments of past aste ...
in his honor.
About 30–35% of the bodies in the asteroid belt belong to dynamical families, each thought to have a common origin in a past collision between asteroids. A family has also been associated with the plutoid dwarf planet
A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
.
Some asteroids have unusual horseshoe orbits that are co-orbital with Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
or another planet. Examples are 3753 Cruithne and . The first instance of this type of orbital arrangement was discovered between Saturn
Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
's moons Epimetheus and Janus. Sometimes these horseshoe objects temporarily become quasi-satellites for a few decades or a few hundred years, before returning to their earlier status. Both Earth and Venus
Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
are known to have quasi-satellites.
Such objects, if associated with Earth or Venus or even hypothetically Mercury, are a special class of Aten asteroids. However, such objects could be associated with the outer planets as well.
Spectral classification
In 1975, an asteroid taxonomic system based on color
Color (or colour in English in the Commonwealth of Nations, Commonwealth English; American and British English spelling differences#-our, -or, see spelling differences) is the visual perception based on the electromagnetic spectrum. Though co ...
, albedo
Albedo ( ; ) is the fraction of sunlight that is Diffuse reflection, diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects ...
, and spectral shape was developed by Chapman, Morrison, and Zellner.[ These properties are thought to correspond to the composition of the asteroid's surface material. The original classification system had three categories: C-types for dark carbonaceous objects (75% of known asteroids), S-types for stony (silicaceous) objects (17% of known asteroids) and U for those that did not fit into either C or S. This classification has since been expanded to include many other asteroid types. The number of types continues to grow as more asteroids are studied.
The two most widely used taxonomies now used are the Tholen classification and SMASS classification. The former was proposed in 1984 by David J. Tholen, and was based on data collected from an eight-color asteroid survey performed in the 1980s. This resulted in 14 asteroid categories.][ In 2002, the Small Main-Belt Asteroid Spectroscopic Survey resulted in a modified version of the Tholen taxonomy with 24 different types. Both systems have three broad categories of C, S, and X asteroids, where X consists of mostly metallic asteroids, such as the M-type. There are also several smaller classes.][
The proportion of known asteroids falling into the various spectral types does not necessarily reflect the proportion of all asteroids that are of that type; some types are easier to detect than others, biasing the totals.
]
Problems
Originally, spectral designations were based on inferences of an asteroid's composition.[ However, the correspondence between spectral class and composition is not always very good, and a variety of classifications are in use. This has led to significant confusion. Although asteroids of different spectral classifications are likely to be composed of different materials, there are no assurances that asteroids within the same taxonomic class are composed of the same (or similar) materials.
]
Active asteroids
Active asteroids are objects that have asteroid-like orbits but show comet
A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or Coma (cometary), coma surrounding ...
-like visual characteristics. That is, they show comae, tails, or other visual evidence of mass-loss (like a comet), but their orbit remains within Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
's orbit (like an asteroid). These bodies were originally designated main-belt comets (MBCs) in 2006 by astronomers David Jewitt and Henry Hsieh, but this name implies they are necessarily icy in composition like a comet and that they only exist within the main-belt, whereas the growing population of active asteroids shows that this is not always the case.
The first active asteroid discovered is 7968 Elst–Pizarro. It was discovered (as an asteroid) in 1979 but then was found to have a tail by Eric Elst and Guido Pizarro in 1996 and given the cometary designation 133P/Elst-Pizarro. Another notable object is 311P/PanSTARRS: observations made by the Hubble Space Telescope
The Hubble Space Telescope (HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the Orbiting Solar Observatory, first space telescope, but it is one of the largest and most ...
revealed that it had six comet-like tails. The tails are suspected to be streams of material ejected by the asteroid as a result of a rubble pile asteroid spinning fast enough to remove material from it.
By smashing into the asteroid Dimorphos, NASA's Double Asteroid Redirection Test spacecraft made it an active asteroid. Scientists had proposed that some active asteroids are the result of impact events, but no one had ever observed the activation of an asteroid. The DART mission activated Dimorphos under precisely known and carefully observed impact conditions, enabling the detailed study of the formation of an active asteroid for the first time.[ ] Observations show that Dimorphos lost approximately 1 million kilograms after the collision. Impact produced a dust plume that temporarily brightened the Didymos system and developed a -long dust tail that persisted for several months.
Observation and exploration
Until the age of space travel, objects in the asteroid belt could only be observed with large telescopes, their shapes and terrain remaining a mystery. The best modern ground-based telescopes and the Earth-orbiting Hubble Space Telescope
The Hubble Space Telescope (HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the Orbiting Solar Observatory, first space telescope, but it is one of the largest and most ...
can only resolve a small amount of detail on the surfaces of the largest asteroids. Limited information about the shapes and compositions of asteroids can be inferred from their light curve
In astronomy, a light curve is a graph (discrete mathematics), graph of the Radiance, light intensity of a celestial object or region as a function of time, typically with the magnitude (astronomy), magnitude of light received on the ''y''-axis ...
s (variation in brightness during rotation) and their spectral properties. Sizes can be estimated by timing the lengths of star occultations (when an asteroid passes directly in front of a star). Radar
Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
imaging can yield good information about asteroid shapes and orbital and rotational parameters, especially for near-Earth asteroids. Spacecraft flybys can provide much more data than any ground or space-based observations; sample-return missions gives insights about regolith composition.
Ground-based observations
As asteroids are rather small and faint objects, the data that can be obtained from ground-based observations (GBO) are limited. By means of ground-based optical telescopes the visual magnitude can be obtained; when converted into the absolute magnitude it gives a rough estimate of the asteroid's size. Light-curve measurements can also be made by GBO; when collected over a long period of time it allows an estimate of the rotational period, the pole orientation (sometimes), and a rough estimate of the asteroid's shape. Spectral data (both visible-light and near-infrared spectroscopy) gives information about the object's composition, used to classify the observed asteroids. Such observations are limited as they provide information about only the thin layer on the surface (up to several micrometers). As planetologist Patrick Michel writes:
Mid- to thermal-infrared observations, along with polarimetry measurements, are probably the only data that give some indication of actual physical properties. Measuring the heat flux of an asteroid at a single wavelength gives an estimate of the dimensions of the object; these measurements have lower uncertainty than measurements of the reflected sunlight in the visible-light spectral region. If the two measurements can be combined, both the effective diameter and the geometric albedo—the latter being a measure of the brightness at zero phase angle, that is, when illumination comes from directly behind the observer—can be derived. In addition, thermal measurements at two or more wavelengths, plus the brightness in the visible-light region, give information on the thermal properties. The thermal inertia, which is a measure of how fast a material heats up or cools off, of most observed asteroids is lower than the bare-rock reference value but greater than that of the lunar regolith; this observation indicates the presence of an insulating layer of granular material on their surface. Moreover, there seems to be a trend, perhaps related to the gravitational environment, that smaller objects (with lower gravity) have a small regolith layer consisting of coarse grains, while larger objects have a thicker regolith layer consisting of fine grains. However, the detailed properties of this regolith layer are poorly known from remote observations. Moreover, the relation between thermal inertia and surface roughness is not straightforward, so one needs to interpret the thermal inertia with caution.
Near-Earth asteroids that come into close vicinity of the planet can be studied in more details with radar
Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
; it provides information about the surface of the asteroid (for example can show the presence of craters and boulders). Such observations were conducted by the Arecibo Observatory
The Arecibo Observatory, also known as the National Astronomy and Ionosphere Center (NAIC) and formerly known as the Arecibo Ionosphere Observatory, is an observatory in Barrio Esperanza, Arecibo, Puerto Rico owned by the US National Science F ...
in Puerto Rico (305 meter dish) and Goldstone Observatory in California (70 meter dish). Radar observations can also be used for accurate determination of the orbital and rotational dynamics of observed objects.[
]
Space-based observations
Both space and ground-based observatories conducted asteroid search programs; the space-based searches are expected to detect more objects because there is no atmosphere to interfere and because they can observe larger portions of the sky. NEOWISE observed more than 100,000 asteroids of the main belt, Spitzer Space Telescope observed more than 700 near-Earth asteroids. These observations determined rough sizes of the majority of observed objects, but provided limited detail about surface properties (such as regolith depth and composition, angle of repose, cohesion, and porosity).[
Asteroids were also studied by the ]Hubble Space Telescope
The Hubble Space Telescope (HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the Orbiting Solar Observatory, first space telescope, but it is one of the largest and most ...
, such as tracking the colliding asteroids in the main belt, break-up of an asteroid, observing an active asteroid with six comet-like tails, and observing asteroids that were chosen as targets of dedicated missions.
Space probe missions
According to Patrick Michel
The internal structure of asteroids is inferred only from indirect evidence: bulk densities measured by spacecraft, the orbits of natural satellites in the case of asteroid binaries, and the drift of an asteroid's orbit due to the Yarkovsky thermal effect. A spacecraft near an asteroid is perturbed enough by the asteroid's gravity to allow an estimate of the asteroid's mass. The volume is then estimated using a model of the asteroid's shape. Mass and volume allow the derivation of the bulk density, whose uncertainty is usually dominated by the errors made on the volume estimate. The internal porosity of asteroids can be inferred by comparing their bulk density with that of their assumed meteorite analogues, dark asteroids seem to be more porous (>40%) than bright ones. The nature of this porosity is unclear.
Dedicated missions
The first asteroid to be photographed in close-up was 951 Gaspra in 1991, followed in 1993 by 243 Ida and its moon Dactyl, all of which were imaged by the ''Galileo'' probe en route to Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
. Other asteroids briefly visited by spacecraft en route to other destinations include 9969 Braille (by '' Deep Space 1'' in 1999), 5535 Annefrank (by '' Stardust'' in 2002), 2867 Šteins and 21 Lutetia (by the ''Rosetta'' probe in 2008), and 4179 Toutatis (China's lunar orbiter '' Chang'e 2'', which flew within in 2012).
The first dedicated asteroid probe was NASA's ''NEAR Shoemaker
''Near Earth Asteroid Rendezvous – Shoemaker'' (''NEAR Shoemaker''), renamed after its 1996 launch in honor of planetary scientist Eugene Merle Shoemaker, Eugene Shoemaker, was a Robotic spacecraft, robotic space probe designed by the Johns ...
'', which photographed 253 Mathilde in 1997, before entering into orbit around 433 Eros, finally landing on its surface in 2001. It was the first spacecraft to successfully orbit and land on an asteroid. From September to November 2005, the Japanese '' Hayabusa'' probe studied 25143 Itokawa in detail and returned samples of its surface to Earth on 13 June 2010, the first asteroid sample-return mission. In 2007, NASA
The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
launched the ''Dawn'' spacecraft, which orbited 4 Vesta
Vesta (minor-planet designation: 4 Vesta) is one of the largest objects in the asteroid belt, with a mean diameter of . It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta (mytho ...
for a year, and observed the dwarf planet Ceres for three years.
'' Hayabusa2'', a probe launched by JAXA
The is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into o ...
2014, orbited its target asteroid 162173 Ryugu for more than a year and took samples that were delivered to Earth in 2020. The spacecraft is now on an extended mission and expected to arrive at a new target in 2031.
NASA launched the OSIRIS-REx in 2016, a sample return mission to asteroid 101955 Bennu. In 2021, the probe departed the asteroid with a sample from its surface. Sample was delivered to Earth in September 2023. The spacecraft continues its extended mission, designated OSIRIS-APEX, to explore near-Earth asteroid Apophis in 2029.
In 2021, NASA launched Double Asteroid Redirection Test (DART), a mission to test technology for defending Earth against potential hazardous objects. DART deliberately crashed into the minor-planet moon Dimorphos of the double asteroid Didymos in September 2022 to assess the potential of a spacecraft impact to deflect an asteroid from a collision course with Earth. In October, NASA declared DART a success, confirming it had shortened Dimorphos's orbital period around Didymos by about 32 minutes.
NASA's '' Lucy'', launched in 2021, is a multiple-asteroid flyby probe focused on flying by 7 Jupiter trojans of varying types. While not yet set to reach its first main target, 3548 Eurybates, until 2027, it has made flybys of the main-belt asteroids 152830 Dinkinesh and 52246 Donaldjohanson.
NASA's '' Psyche'', launched in October 2023, is intended to study the large metallic asteroid of the same name, and is on track to arrive there in 2029.
ESA's ''Hera
In ancient Greek religion, Hera (; ; in Ionic Greek, Ionic and Homeric Greek) is the goddess of marriage, women, and family, and the protector of women during childbirth. In Greek mythology, she is queen of the twelve Olympians and Mount Oly ...
'', launched in October 2024, is intended study the results of the DART impact. It is expected to measure the size and morphology of the crater, and momentum transmitted by the impact, to determine the efficiency of the deflection produced by DART.
CNSA's '' Tianwen-2'' was launch in May 2025. It will use solar electric propulsion to explore the co-orbital near-Earth asteroid 469219 Kamoʻoalewa and the active asteroid 311P/PanSTARRS. The spacecraft is tasked with collecting samples of the regolith of Kamo'oalewa.
File:Hayabusa2 Ion thruster.jpg, ''Hayabusa2''
File:Dawn - PIA12033.jpg, ''Dawn''
File:Lucy-PatroclusMenoetius-art.png, ''Lucy''
File:PSYCHE.jpg, ''Psyche''
Planned missions
* JAXA's DESTINY+ is a mission for a flyby of the Geminids meteor shower parent body 3200 Phaethon, as well as various minor bodies. Its launch is planned for 2024.
Asteroid mining
The concept of asteroid mining was proposed in 1970s. Matt Anderson defines successful asteroid mining as "the development of a mining program that is both financially self-sustaining and profitable to its investors". It has been suggested that asteroids might be used as a source of materials that may be rare or exhausted on Earth, or materials for constructing space habitat
A space settlement (also called a space habitat, spacestead, space city or space colony) is a Human settlement, settlement in outer space, sustaining more extensively Space habitat (facility), habitation facilities in space than a general space ...
s. Materials that are heavy and expensive to launch from Earth may someday be mined from asteroids and used for space manufacturing and construction.
As resource depletion
Resource depletion occurs when a natural resource is consumed faster than it can be replenished. The value of a resource depends on its availability in nature and the cost of extracting it. By the law of supply and demand, the Scarcity, scarcer ...
on Earth becomes more real, the idea of extracting valuable elements from asteroids and returning these to Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
for profit, or using space-based resources to build solar-power satellites and space habitats, becomes more attractive. Hypothetically, water processed from ice could refuel orbiting propellant depots.
From the astrobiological perspective, asteroid prospecting could provide scientific data for the search for extraterrestrial intelligence (SETI
Seti or SETI may refer to:
Astrobiology
* SETI, the search for extraterrestrial intelligence.
** SETI Institute, an astronomical research organization
*** SETIcon, a former convention organized by the SETI Institute
** Berkeley SETI Research Cent ...
). Some astrophysicists have suggested that if advanced extraterrestrial civilizations employed asteroid mining long ago, the hallmarks of these activities might be detectable.
Threats to Earth
There is increasing interest in identifying asteroids whose orbits cross Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
's, and that could, given enough time, collide with Earth. The three most important groups of near-Earth asteroids are the Apollos, Amors, and Atens.
The near-Earth asteroid 433 Eros had been discovered as long ago as 1898, and the 1930s brought a flurry of similar objects. In order of discovery, these were: 1221 Amor, 1862 Apollo, 2101 Adonis, and finally 69230 Hermes, which approached within 0.005 AU of Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
in 1937. Astronomers began to realize the possibilities of Earth impact.
Two events in later decades increased the alarm: the increasing acceptance of the Alvarez hypothesis that an impact event
An impact event is a collision between astronomical objects causing measurable effects. Impact events have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effe ...
resulted in the Cretaceous–Paleogene extinction, and the 1994 observation of Comet Shoemaker-Levy 9 crashing into Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
. The U.S. military also declassified the information that its military satellites, built to detect nuclear explosions, had detected hundreds of upper-atmosphere impacts by objects ranging from one to ten meters across.
All of these considerations helped spur the launch of highly efficient surveys, consisting of charge-coupled device ( CCD) cameras and computers directly connected to telescopes. , it was estimated that 89% to 96% of near-Earth asteroids one kilometer or larger in diameter had been discovered.[ , the LINEAR system alone had discovered 147,132 asteroids. Among the surveys, 19,266 near-Earth asteroids have been discovered including almost 900 more than in diameter.
In June 2018, the National Science and Technology Council warned that the United States is unprepared for an asteroid impact event, and has developed and released the "National Near-Earth Object Preparedness Strategy Action Plan" to better prepare.] According to expert testimony in the United States Congress
The United States Congress is the legislature, legislative branch of the federal government of the United States. It is a Bicameralism, bicameral legislature, including a Lower house, lower body, the United States House of Representatives, ...
in 2013, NASA
The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
would require at least five years of preparation before a mission to intercept an asteroid could be launched.
Asteroid deflection strategies
Various collision avoidance techniques have different trade-offs with respect to metrics such as overall performance, cost, failure risks, operations, and technology readiness. There are various methods for changing the course of an asteroid/comet.[C. D. Hall and I. M. Ross, "Dynamics and Control Problems in the Deflection of Near-Earth Objects", ''Advances in the Astronautical Sciences, Astrodynamics 1997'', Vol. 97, Part I, 1997, pp. 613–631.] These can be differentiated by various types of attributes such as the type of mitigation (deflection or fragmentation), energy source (kinetic, electromagnetic, gravitational, solar/thermal, or nuclear), and approach strategy (interception, rendezvous, or remote station).
Strategies fall into two basic sets: fragmentation and delay. Fragmentation concentrates on rendering the impactor harmless by fragmenting it and scattering the fragments so that they miss the Earth or are small enough to burn up in the atmosphere. Delay exploits the fact that both the Earth and the impactor are in orbit. An impact occurs when both reach the same point in space at the same time, or more correctly when some point on Earth's surface intersects the impactor's orbit when the impactor arrives. Since the Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
is approximately 12,750 km in diameter and moves at approx. 30 km per second in its orbit, it travels a distance of one planetary diameter in about 425 seconds, or slightly over seven minutes. Delaying, or advancing the impactor's arrival by times of this magnitude can, depending on the exact geometry of the impact, cause it to miss the Earth.
" Project Icarus" was one of the first projects designed in 1967 as a contingency plan in case of collision with 1566 Icarus. The plan relied on the new Saturn V rocket, which did not make its first flight until after the report had been completed. Six Saturn V rockets would be used, each launched at variable intervals from months to hours away from impact. Each rocket was to be fitted with a single 100-megaton nuclear warhead as well as a modified Apollo Service Module and uncrewed Apollo Command Module for guidance to the target. The warheads would be detonated 30 meters from the surface, deflecting or partially destroying the asteroid. Depending on the subsequent impacts on the course or the destruction of the asteroid, later missions would be modified or cancelled as needed. The "last-ditch" launch of the sixth rocket would be 18 hours prior to impact.
Fiction
Asteroids and the asteroid belt are a staple of science fiction stories. Asteroids play several potential roles in science fiction: as places human beings might colonize, resources for extracting minerals, hazards encountered by spacecraft traveling between two other points, and as a threat to life on Earth or other inhabited planets, dwarf planets, and natural satellites by potential impact.
See also
* Exoasteroid
* List of minor planets
The following is a list of minor planets in ascending numerical order. Minor planets are Small Solar System bodies, small bodies in the Solar System: asteroids, Distant minor planet, distant objects, and dwarf planets, but not comets. As of 2022 ...
* List of exceptional asteroids
* List of asteroid close approaches to Earth
* Lost minor planet
* Meanings of minor-planet names
Notes
References
Further reading
*
*
*
*
*
*
*
*
*
External links
*
*
*
NASA Asteroid and Comet Watch site
*
{{Portal bar, Astronomy, Spaceflight, Outer space, Solar System
Minor planets
Solar System