Al Ghiorso
   HOME

TheInfoList



OR:

Albert Ghiorso (July 15, 1915 – December 26, 2010) was an American nuclear scientist and co-discoverer of a record 12
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s on the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
. His research career spanned six decades, from the early 1940s to the late 1990s.


Biography


Early life

Ghiorso was born in
Vallejo, California Vallejo ( ; ) is a city in Solano County, California, United States, and the second largest city in the North Bay (San Francisco Bay Area), North Bay region of the San Francisco Bay Area, Bay Area. Located on the shores of San Pablo Bay, the ci ...
on July 15, 1915, of Italian and Spanish ancestry. He grew up in
Alameda, California Alameda ( ; ; Spanish for "Avenue (landscape), tree-lined path") is a city in Alameda County, California, United States, located in the East Bay (San Francisco Bay Area), East Bay region of the Bay Area. The city is built on an informal archipe ...
. Living near the
Oakland International Airport Oakland International Airport is an international airport in Oakland, California, United States. The airport is located south of downtown Oakland and east of San Francisco, serving the East Bay of the San Francisco Bay Area. The airport is ...
, he became interested in airplanes, aeronautics, and other technologies. After graduating from high school, he built radio circuitry and earned a reputation for establishing radio contacts at distances that outdid the military. He received his BS in
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems that use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
from the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after t ...
in 1937. After graduation, he worked for Reginald Tibbets, a prominent amateur radio operator who operated a business supplying radiation detectors to the government. Ghiorso's ability to develop and produce these instruments, as well as a variety of electronic tasks, brought him into contact with the nuclear scientists at the University of California Radiation Laboratory at Berkeley, in particular
Glenn Seaborg Glenn Theodore Seaborg ( ; April 19, 1912February 25, 1999) was an American chemist whose involvement in the synthesis, discovery and investigation of ten transuranium elements earned him a share of the 1951 Nobel Prize in Chemistry. His work i ...
. During a job in which he was to install an intercom at the lab, he met two secretaries, one of whom, Helen Griggs, married Seaborg. The other, Wilma Belt, became Albert's wife of 60+ years. Ghiorso was raised in a devout Christian family, but later left the religion and became an atheist. However, he still identified with Christian ethics.


Wartime research

In the early 1940s, Seaborg moved to Chicago to work on the Manhattan Project. He invited Ghiorso to join him, and for the next four years Ghiorso developed sensitive instruments for detecting the radiation associated with nuclear decay, including spontaneous fission. One of Ghiorso's breakthrough instruments was a 48-channel pulse height analyzer, which enabled him to identify the energy, and therefore the source, of the radiation. During this time they discovered two new elements (95,
americium Americium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Am and atomic number 95. It is radioactive and a transuranic member of the actinide series in the periodic table, located under the lanthanide element e ...
and 96,
curium Curium is a synthetic chemical element; it has symbol Cm and atomic number 96. This transuranic actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first inten ...
), although publication was withheld until after the war.


New elements

After the war, Seaborg and Ghiorso returned to Berkeley, where they and colleagues used the 60" Crocker cyclotron to produce elements of increasing atomic number by bombarding exotic targets with helium ions. In experiments during 1949–1950, they produced and identified elements 97 (
berkelium Berkelium is a synthetic chemical element; it has symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence Berkeley National ...
) and 98 (
californium Californium is a synthetic chemical element; it has symbol Cf and atomic number 98. It was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory) by bombarding curium with al ...
). In 1953, in a collaboration with Argonne Lab, Ghiorso and collaborators sought and found elements 99 (
einsteinium Einsteinium is a synthetic chemical element; it has symbol Es and atomic number 99 and is a member of the actinide series and the seventh transuranium element. Einsteinium was discovered as a component of the debris of the first hydrogen bomb ...
) and 100 (
fermium Fermium is a synthetic chemical element; it has symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macros ...
), identified by their characteristic radiation in dust collected by airplanes from the first thermonuclear explosion (the Mike test). In 1955, the group used the cyclotron to produce 17 atoms of element 101 (
mendelevium Mendelevium is a synthetic chemical element; it has symbol Md ( formerly Mv) and atomic number 101. A metallic radioactive transuranium element in the actinide series, it is the first element by atomic number that currently cannot be produced ...
), the first new element to be discovered atom-by-atom. The recoil technique invented by Ghiorso was crucial to obtaining an identifiable signal from individual atoms of the new element. In the mid-1950s it became clear that to extend the periodic chart any further, a new accelerator would be needed, and the Berkeley Heavy Ion Linear Accelerator (HILAC) was built, with Ghiorso in charge. That machine was used in the discovery of elements 102–106 (102,
nobelium Nobelium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol No and atomic number 102. It is named after Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transura ...
; 103,
lawrencium Lawrencium is a synthetic chemical element; it has symbol Lr (formerly Lw) and atomic number 103. It is named after Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radioactiv ...
; 104,
rutherfordium Rutherfordium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Rf and atomic number 104. It is named after physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be made in a p ...
; 105,
dubnium Dubnium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Db and atomic number 105. It is highly radioactive: the most stable known isotopes of dubnium, isotope, dubnium-268, has a half-life of about 16 hours. ...
and 106,
seaborgium Seaborgium is a synthetic chemical element; it has symbol Sg and atomic number 106. It is named after the American nuclear chemist Glenn T. Seaborg. As a synthetic element, it can be created in a laboratory but is not found in nature. It is als ...
), each produced and identified on the basis of only a few atoms. The discovery of each successive element was made possible by the development of innovative techniques in robotic target handling, fast chemistry, efficient radiation detectors, and computer data processing. The 1972 upgrade of the HILAC to the superHILAC provided higher intensity ion beams, which was crucial to producing enough new atoms to enable detection of element 106. With increasing atomic number, the experimental difficulties of producing and identifying a new element increase significantly. In the 1970s and 1980s, resources for new element research at Berkeley were diminishing, but the GSI laboratory at Darmstadt, Germany, under the leadership of Peter Armbruster and with considerable resources, was able to produce and identify elements 107–109 (107,
bohrium Bohrium is a synthetic chemical element; it has symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. As a synthetic element, it can be created in particle accelerators but is not found in nature. All known isotopes of ...
; 108,
hassium Hassium is a synthetic element, synthetic chemical element; it has chemical symbol, symbol Hs and atomic number 108. It is highly radioactive: its most stable known isotopes have half-life, half-lives of about ten seconds. One of its isotopes, Hs ...
and 109,
meitnerium Meitnerium is a synthetic chemical element; it has symbol Mt and atomic number 109. It is an extremely radioactive synthetic element (an element not found in nature, but can be created in a laboratory). The most stable known isotope, meitnerium ...
). In the early 1990s, the Berkeley and Darmstadt groups made a collaborative attempt to create element 110. Experiments at Berkeley were unsuccessful, but eventually elements 110–112 (110,
darmstadtium Darmstadtium is a synthetic chemical element; it has symbol Ds and atomic number 110. It is extremely radioactive: the most stable known isotope, darmstadtium-281, has a half-life of approximately 14 seconds. Darmstadtium was first created in No ...
; 111,
roentgenium Roentgenium () is a synthetic chemical element; it has symbol Rg and atomic number 111. It is extremely radioactive and can only be created in a laboratory. The most stable known isotope, roentgenium-282, has a half-life of 130 seconds, althoug ...
and 112,
copernicium Copernicium is a synthetic chemical element; it has symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
) were identified at the Darmstadt laboratory. Subsequent work at the JINR laboratory at Dubna, led by Yuri Oganessian and a Russian-American team of scientists, was successful in identifying elements 113–118 (113,
nihonium Nihonium is a synthetic chemical element; it has symbol Nh and atomic number 113. It is extremely radioactive: its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactini ...
; 114,
flerovium Flerovium is a synthetic chemical element; it has symbol Fl and atomic number 114. It is an extremely radioactive, superheavy element, named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Du ...
; 115,
moscovium Moscovium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Resea ...
; 116,
livermorium Livermorium is a synthetic chemical element; it has symbol Lv and atomic number 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the La ...
; 117,
tennessine Tennessine is a synthetic element; it has Chemical symbol, symbol Ts and atomic number 117. It has the second-highest atomic number and joint-highest atomic mass of all known elements and is the penultimate element of the Period 7 element, 7th ...
and 118,
oganesson Oganesson is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint ...
), thereby completing the
Period 7 element A period 7 element is one of the chemical elements in the seventh row (or period) of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the e ...
s of the periodic table of the elements.


Inventions

Ghiorso invented numerous techniques and machines for isolating and identifying heavy elements atom-by-atom. He is generally credited with implementing the multichannel analyzer and the technique of recoil to isolate reaction products, although both of these were significant extensions of previously understood concepts. His concept for a new type of accelerator, the Omnitron, is acknowledged to have been a brilliant advance that probably would have enabled the Berkeley lab to discover numerous additional new elements, but the machine was never built, a victim of the evolving political landscape of the 1970s in the U.S. that de-emphasized basic nuclear research and greatly expanded research on environmental, health, and safety issues. Partially as a result of the failure to build the Omnitron, Ghiorso (together with colleagues Bob Main and others) conceived the joining of the HILAC and the Bevatron, which he called the Bevalac. This combination machine, an ungainly articulation across the steep slope at the Rad Lab, provided heavy ions at GeV energies, thereby enabling development of two new fields of research: "high-energy nuclear physics," meaning that the compound nucleus is sufficiently hot to exhibit collective dynamical effects, and heavy ion therapy, in which high-energy ions are used to irradiate tumors in cancer patients. Both of these fields have expanded into activities in many laboratories and clinics worldwide.


Later life

In his later years, Ghiorso continued research toward finding superheavy elements, fusion energy, and innovative electron beam sources. He was a non-participating co-author of the experiments in 1999 that gave evidence of elements 116 and 118, which later turned out to be a case of scientific fraud perpetrated by the first author,
Victor Ninov Victor Ninov (; born June 27, 1959) is a Bulgarian physicist and former researcher who worked primarily in creating superheavy elements. He is known for the co-discoveries of elements 110, 111, and 112 ( darmstadtium, roentgenium and copernic ...
. He also had brief research interests in the free quark experiment of William Fairbank of Stanford, in the discovery of element 43, and in the electron disk accelerator, among others.


Legacy

Albert Ghiorso is credited with having co-discovered the following elements: * ''
Americium Americium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Am and atomic number 95. It is radioactive and a transuranic member of the actinide series in the periodic table, located under the lanthanide element e ...
'' ca. 1945 (element 95) * ''
Curium Curium is a synthetic chemical element; it has symbol Cm and atomic number 96. This transuranic actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first inten ...
'' in 1944 (element 96) * ''
Berkelium Berkelium is a synthetic chemical element; it has symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence Berkeley National ...
'' in 1949 (element 97) * ''
Californium Californium is a synthetic chemical element; it has symbol Cf and atomic number 98. It was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory) by bombarding curium with al ...
'' in 1950 (element 98) * ''
Einsteinium Einsteinium is a synthetic chemical element; it has symbol Es and atomic number 99 and is a member of the actinide series and the seventh transuranium element. Einsteinium was discovered as a component of the debris of the first hydrogen bomb ...
'' in 1952 (element 99) * ''
Fermium Fermium is a synthetic chemical element; it has symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macros ...
'' in 1953 (element 100) * ''
Mendelevium Mendelevium is a synthetic chemical element; it has symbol Md ( formerly Mv) and atomic number 101. A metallic radioactive transuranium element in the actinide series, it is the first element by atomic number that currently cannot be produced ...
'' in 1955 (element 101) * ''
Nobelium Nobelium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol No and atomic number 102. It is named after Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transura ...
'' in 1958–59 (element 102) * ''
Lawrencium Lawrencium is a synthetic chemical element; it has symbol Lr (formerly Lw) and atomic number 103. It is named after Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radioactiv ...
'' in 1961 (element 103) * ''
Rutherfordium Rutherfordium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Rf and atomic number 104. It is named after physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be made in a p ...
'' in 1969 (element 104) * ''
Dubnium Dubnium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Db and atomic number 105. It is highly radioactive: the most stable known isotopes of dubnium, isotope, dubnium-268, has a half-life of about 16 hours. ...
'' in 1970 (element 105) * ''
Seaborgium Seaborgium is a synthetic chemical element; it has symbol Sg and atomic number 106. It is named after the American nuclear chemist Glenn T. Seaborg. As a synthetic element, it can be created in a laboratory but is not found in nature. It is als ...
'' in 1974 (element 106) Ghiorso personally selected some of the names recommended by his group for the new elements. His original name for element 105 (hahnium) was changed by the International Union of Pure and Applied Chemistry (
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
) to dubnium, to recognize the contributions of the laboratory at Dubna, Russia, in the search for trans-fermium elements. His recommendation for element 106, seaborgium, was accepted only after extensive debate about naming an element after a living person. In 1999, evidence for two superheavy elements ( element 116 and element 118) was published by a group in Berkeley. The discovery group intended to propose the name '' ghiorsium'' for element 118, but eventually the data were found to have been tampered and in 2002 the claims were withdrawn. Ghiorso's lifetime output comprised about 170 technical papers, most published in The Physical Review. Ghiorso was famous among his colleagues for his endless stream of creative "doodles," which define an art form suggestive of fractals. He also developed a state-of-the-art camera for birdwatching, and was a constant supporter of environmental causes and organizations. Several obituaries are available online, and a full-length biography is in preparation.


Notes


References


Images in the LBNL archives
{{DEFAULTSORT:Ghiorso, Albert 1915 births 2010 deaths American atheists American electrical engineers Discoverers of chemical elements People involved with the periodic table Manhattan Project people People from Alameda, California People from Vallejo, California UC Berkeley College of Engineering alumni Howard N. Potts Medal recipients Fellows of the American Physical Society Americium