Rhombicosidodecahedron
   HOME



picture info

Rhombicosidodecahedron
In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has a total of 62 faces: 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, with 60 vertices, and 120 edges. Names Johannes Kepler in ''Harmonices Mundi'' (1618) named this polyhedron a ''rhombicosidodecahedron'', being short for ''truncated icosidodecahedral rhombus'', with ''icosidodecahedral rhombus'' being his name for a rhombic triacontahedron. There are different truncations of a rhombic triacontahedron into a topological rhombicosidodecahedron: Prominently its rectification (left), the one that creates the uniform solid (center), and the rectification of the dual icosidodecahedron (right), which is the core of the dual compound. Dimensions For a rhombicosidodecahedron with edge length ''a'', its surface area and volume are: :\begin A &= \left(30+5\sqrt+3\sqrt\right) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gyrate Rhombicosidodecahedron
In geometry, the gyrate rhombicosidodecahedron is one of the Johnson solids (). It is also a Midsphere#Canonical polyhedron, canonical polyhedron. Construction The gyrate rhombicosidodecahedron can be constructed similarly as rhombicosidodecahedron: it is constructed from parabidiminished rhombicosidodecahedron by attaching two regular pentagonal cupolas onto its Decagon, decagonal faces. As a result, these pentagonal cupolas cover its dodecagonal faces, so the resulting polyhedron has 20 equilateral triangles, 30 Square (geometry), squares, and 10 regular pentagons as its faces. The difference between those two polyhedrons is that one of two pentagonal cupolas from the gyrate rhombicosidodecahedron is rotated through 36°. A Convex set, convex polyhedron in which all faces are regular polygons is called the Johnson solid, and the gyrate rhombicosidodecahedron is among them, enumerated as the 72th Johnson solid J_ . Properties Because the two aforementioned polyhedrons ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Johnson Solid
In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two Solid geometry, solids with such a property: the first solids are the Pyramid (geometry), pyramids, Cupola (geometry), cupolas, and a Rotunda (geometry), rotunda; some of the solids may be constructed by attaching with those previous solids, whereas others may not. Definition and background A Johnson solid is a convex polyhedron whose faces are all regular polygons. The convex polyhedron means as bounded intersections of finitely many Half-space (geometry), half-spaces, or as the convex hull of finitely many points. Although there is no restriction that any given regular polygon cannot be a face of a Johnson solid, some authors required that Johnson solids are not Uniform polyhedron, uniform. This means that a Johnson solid is not a Platonic solid, Arc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagonal Cupola
Properties The pentagonal cupola (geometry), cupola's faces are five equilateral triangles, five squares, one regular pentagon, and one regular decagon. It has the property of Convex set, convexity and regular polygonal faces, from which it is classified as the fifth Johnson solid. This cupola produces two or more regular polyhedrons by slicing it with a plane, an elementary polyhedron's example. The following formulae for circumscribed sphere, circumradius R , and height h , surface area A , and volume V may be applied if all face (geometry), faces are regular polygon, regular with edge length a : \begin h &= \sqrta &\approx 0.526a, \\ R &= \fraca &\approx 2.233a, \\ A &= \fraca^2 &\approx 16.580a^2, \\ V &= \fraca^3 &\approx 2.324a^3. \end It has an axis of symmetry passing through the center of both top and base, which is symmetrical by rotating around it at one-, two-, three-, and four-fifth of a full-turn angle. It is also mirror-symmetric relative to any per ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zometool
Zometool is a construction set toy that had been created by a collaboration of Steve Baer (the creator of Zome (architecture), Zome architecture), artist Clark Richert, Paul Hildebrandt (the present CEO of Zometool), and co-inventor Marc Pelletier. It is manufactured by Zometool, Inc. According to the company, Zometool was primarily designed for kids. Zometool has also been used in other fields including mathematics and physics. For example, aperiodic tilings such as Penrose tilings can be modeled using Zometool. The learning tool was designed by inventor-designer Steve Baer, his wife Holly and others. The Zometool plastic construction set toy is produced by a privately owned company of the same name, based outside of Longmont, Colorado, and which evolved out of Baer's company ZomeWorks. Its elements consist of small connector nodes and struts of various colors. The overall shape of a connector node is that of a non-uniform small rhombicosidodecahedron with each face replaced by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedean Solid
The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygon and are vertex-transitive, although they aren't face-transitive. The solids were named after Archimedes, although he did not claim credit for them. They belong to the class of uniform polyhedra, the polyhedra with regular faces and symmetric vertices. Some Archimedean solids were portrayed in the works of artists and mathematicians during the Renaissance. The elongated square gyrobicupola or ' is an extra polyhedron with regular faces and congruent vertices, but it is not generally counted as an Archimedean solid because it is not vertex-transitive. The solids The Archimedean solids have a single vertex configuration and highly symmetric properties. A vertex configuration indicates which regular polygons meet at each vertex. For instance, the configuration 3 \cdot 5 \cdot 3 \cdot 5 indicates a polyhedron in which each vertex is met by alternating two triangles and two pentagons. Highl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Golden Rectangle
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio \tfrac :1, or with approximately equal to or Golden rectangles exhibit a special form of self-similarity: if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well. Construction Owing to the Pythagorean theorem, the diagonal dividing one half of a square equals the radius of a circle whose outermost point is the corner of a golden rectangle added to the square. Thus, a golden rectangle can be Straightedge and compass construction, constructed with only a straightedge and compass in four steps: # Draw a square # Draw a line from the midpoint of one side of the square to an opposite corner # Use that line as the radius to draw an arc that defines the height of the rectangle # Complete the golden rectangle A distinctive feature of this shape is that when a square (geometry), square section is added—or removed—the product is another golden re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedron
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface (mathematics), surface. The terms solid polyhedron and polyhedral surface are commonly used to distinguish the two concepts. Also, the term ''polyhedron'' is often used to refer implicitly to the whole structure (mathematics), structure formed by a solid polyhedron, its polyhedral surface, its faces, its edges, and its vertices. There are many definitions of polyhedron. Nevertheless, the polyhedron is typically understood as a generalization of a two-dimensional polygon and a three-dimensional specialization of a polytope, a more general concept in any number of dimensions. Polyhedra have several general characteristics that include the number of faces, topological classification by Eule ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geodesic Dome
A geodesic dome is a hemispherical thin-shell structure (lattice-shell) based on a geodesic polyhedron. The rigid triangular elements of the dome distribute stress throughout the structure, making geodesic domes able to withstand very heavy loads for their size. History The first geodesic dome was designed after World War I by Walther Bauersfeld, chief engineer of Carl Zeiss Jena, an optical company, for a planetarium to house his planetarium projector. An initial, small dome was patented and constructed by the firm of Dykerhoff and Wydmann on the roof of the Carl Zeiss Werke in Jena, Germany. A larger dome, called "The Wonder of Jena", opened to the public on July 18, 1926. Twenty years later, Buckminster Fuller coined the term "geodesic" from field experiments with artist Kenneth Snelson at Black Mountain College in 1948 and 1949. Although Fuller was not the original inventor, he is credited with the U.S. popularization of the idea for which he received on 29 J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagrammic Prism
In geometry, the pentagrammic prism is one of an infinite set of nonconvex Prism (geometry), prisms formed by square sides and two regular star polygon caps, in this case two pentagrams. It is a special case of a right prism with a pentagram as base, which in general has rectangular non-base faces. Topologically it is the same as a convex pentagonal prism. It is the 78th model in the list of uniform polyhedra, as the first representative of Prismatic uniform polyhedron, uniform star prisms, along with the pentagrammic antiprism, which is the 79th model. Geometry It has 7 faces, 15 edges and 10 vertices. This polyhedron is identified with the indexed name U78 as a uniform polyhedron. The pentagram face has an ambiguous interior because it is self-intersecting. The central pentagon region can be considered interior or exterior, depending on how the interior is defined. One definition of the interior is the set of points from which a ray (geometry), ray crosses the boundary an odd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Small Stellated Truncated Dodecahedron
Small means of insignificant size. Small may also refer to: Science and technology * SMALL, an ALGOL-like programming language * ''Small'' (journal), a nano-science publication * <small>, an HTML element that defines smaller text Arts and entertainment Fictional characters * Small, in the British children's show Big & Small Other uses * Small (surname) * List of people known as the Small * "Small", a song from the album ''The Cosmos Rocks'' by Queen + Paul Rodgers See also * Smal (other) Smal may refer to: People * (1927-2001), Dutch musician * Georges Smal (1928–1988), Belgian writer * Gert Smal (born 1961), South African rugby player * Gijs Smal (born 1997), Dutch football player * (born 1939), Belgian politician; a memb ... * Smalls (other) {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bilunabirotunda
In geometry, the bilunabirotunda is a Johnson solid with faces of 8 equilateral triangles, 2 squares, and 4 regular pentagons. Properties The bilunabirotunda is named from the prefix ''lune'', meaning a figure featuring two triangles adjacent to opposite sides of a square. Therefore, the faces of a bilunabirotunda possess 8 equilateral triangles, 2 squares, and 4 regular pentagons as it faces. It is one of the Johnson solids—a convex polyhedron in which all of the faces are regular polygon—enumerated as 91st Johnson solid J_ . The surface area of a bilunabirotunda with edge length a is: \left(2 + 2\sqrt + \sqrt\right)a^2 \approx 12.346a^2, and the volume of a bilunabirotunda is: \fraca^3 \approx 3.0937a^3. Construction The bilunabirotunda is an elementary polyhedron: it cannot be separated by a plane into two small regular-faced polyhedra. One way to construct a bilunabirotunda is by attaching two wedges and two tridiminished icosahedrons. For edge lengt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dodecahedron
In geometry, a dodecahedron (; ) or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three Kepler–Poinsot polyhedron, regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120. Some dodecahedra have the same combinatorial structure as the regular dodecahedron (in terms of the graph formed by its vertices and edges), but their pentagonal faces are not regular: The #Pyritohedron, pyritohedron, a common crystal form in pyrite, has pyritohedral symmetry, while the #Tetartoid, tetartoid has tetrahedral symmetry. The rhombic dodecahedron can be seen as a limiting case of the pyritohedron, and it has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra, are space-filling polyhedra, space-filling. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]