In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any
polyhedron with twelve flat faces. The most familiar dodecahedron is the
regular dodecahedron with regular pentagons as faces, which is a
Platonic solid
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
. There are also three
regular star dodecahedra, which are constructed as
stellations of the convex form. All of these have
icosahedral symmetry
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of t ...
, order 120.
Some dodecahedra have the same combinatorial structure as the regular dodecahedron (in terms of the graph formed by its vertices and edges), but their pentagonal faces are not regular:
The
pyritohedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
, a common crystal form in
pyrite
The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Fe S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral.
Pyrite's metallic luster and pale brass-yellow hue giv ...
, has
pyritohedral symmetry, while the
tetartoid has
tetrahedral symmetry
150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry
A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection ...
.
The
rhombic dodecahedron can be seen as a limiting case of the pyritohedron, and it has
octahedral symmetry
A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhed ...
. The
elongated dodecahedron and
trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra, are
space-filling. There are numerous
other dodecahedra.
While the regular dodecahedron shares many features with other Platonic solids, one unique property of it is that one can start at a corner of the surface and draw an infinite number of straight lines across the figure that return to the original point without crossing over any other corner.
Regular dodecahedron
The convex regular dodecahedron is one of the five regular
Platonic solid
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s and can be represented by its
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mor ...
.
The
dual polyhedron
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the othe ...
is the regular
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetric ...
, having five equilateral triangles around each vertex.
The convex regular dodecahedron also has three
stellations, all of which are regular star dodecahedra. They form three of the four
Kepler–Poinsot polyhedra. They are the
small stellated dodecahedron , the
great dodecahedron
In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel penta ...
, and the
great stellated dodecahedron . The small stellated dodecahedron and great dodecahedron are dual to each other; the great stellated dodecahedron is dual to the
great icosahedron . All of these regular star dodecahedra have regular pentagonal or
pentagram
A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle aro ...
mic faces. The convex regular dodecahedron and great stellated dodecahedron are different realisations of the same
abstract regular polyhedron; the small stellated dodecahedron and great dodecahedron are different realisations of another abstract regular polyhedron.
Other pentagonal dodecahedra
In
crystallography
Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The wo ...
, two important dodecahedra can occur as crystal forms in some
symmetry classes of the
cubic crystal system that are topologically equivalent to the regular dodecahedron but less symmetrical: the pyritohedron with
pyritohedral symmetry, and the
tetartoid with
tetrahedral symmetry
150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry
A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection ...
:
Pyritohedron
A pyritohedron is a dodecahedron with
pyritohedral (T
h) symmetry. Like the
regular dodecahedron, it has twelve identical
pentagon
In geometry, a pentagon (from the Greek language, Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is ...
al faces, with three meeting in each of the 20 vertices (see figure). However, the pentagons are not constrained to be regular, and the underlying atomic arrangement has no true fivefold symmetry axis. Its 30 edges are divided into two sets – containing 24 and 6 edges of the same length. The only axes of
rotational symmetry
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which i ...
are three mutually perpendicular twofold axes and four threefold axes.
Although regular dodecahedra do not exist in crystals, the pyritohedron form occurs in the crystals of the mineral
pyrite
The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Fe S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral.
Pyrite's metallic luster and pale brass-yellow hue giv ...
, and it may be an inspiration for the discovery of the regular
Platonic solid
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
form. The true regular dodecahedron can occur as a shape for
quasicrystals (such as
holmium–magnesium–zinc quasicrystal) with
icosahedral symmetry
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of t ...
, which includes true fivefold rotation axes.
Crystal pyrite
The name ''crystal pyrite'' comes from one of the two common
crystal habits shown by
pyrite
The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Fe S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral.
Pyrite's metallic luster and pale brass-yellow hue giv ...
(the other one being the
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the on ...
). In pyritohedral pyrite, the faces have a
Miller index
Miller indices form a notation system in crystallography for lattice planes in crystal (Bravais) lattices.
In particular, a family of lattice planes of a given (direct) Bravais lattice is determined by three integers ''h'', ''k'', and '' ...
of (210), which means that the
dihedral angle
A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the un ...
is 2·arctan(2) ≈ 126.87° and each pentagonal face has one angle of approximately 121.6° in between two angles of approximately 106.6° and opposite two angles of approximately 102.6°. The following formulas show the measurements for the face of a perfect crystal (which is rarely found in nature).
Cartesian coordinates
The eight vertices of a cube have the coordinates (±1, ±1, ±1).
The coordinates of the 12 additional vertices are
(0, ±(1 + ''h''), ±(1 − ''h''
2)
),
(±(1 + ''h''), ±(1 − ''h''
2), 0
) and
(±(1 − ''h''
2), 0, ±(1 + ''h'')
).
''h'' is the height of the
wedge-shaped "roof" above the faces of that cube with edge length 2.
An important case is ''h'' = (a quarter of the cube edge length) for perfect natural pyrite (also the pyritohedron in the
Weaire–Phelan structure).
Another one is ''h'' = = 0.618... for the
regular dodecahedron. See section ''
Geometric freedom'' for other cases.
Two pyritohedra with swapped nonzero coordinates are in dual positions to each other like the dodecahedra in the
compound of two dodecahedra.
Geometric freedom
The pyritohedron has a geometric degree of freedom with
limiting cases of a cubic
convex hull at one limit of collinear edges, and a
rhombic dodecahedron as the other limit as 6 edges are degenerated to length zero. The regular dodecahedron represents a special intermediate case where all edges and angles are equal.
It is possible to go past these limiting cases, creating concave or nonconvex pyritohedra. The ''endo-dodecahedron'' is concave and equilateral; it can tessellate space with the convex regular dodecahedron. Continuing from there in that direction, we pass through a degenerate case where twelve vertices coincide in the centre, and on to the regular
great stellated dodecahedron where all edges and angles are equal again, and the faces have been distorted into regular
pentagrams. On the other side, past the rhombic dodecahedron, we get a nonconvex equilateral dodecahedron with fish-shaped self-intersecting equilateral pentagonal faces.
Tetartoid
A tetartoid (also tetragonal pentagonal dodecahedron, pentagon-tritetrahedron, and tetrahedric pentagon dodecahedron) is a dodecahedron with chiral
tetrahedral symmetry
150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry
A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection ...
(T). Like the
regular dodecahedron, it has twelve identical
pentagon
In geometry, a pentagon (from the Greek language, Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is ...
al faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the figure has no fivefold symmetry axes.
Although regular dodecahedra do not exist in crystals, the tetartoid form does. The name tetartoid comes from the Greek root for one-fourth because it has one fourth of full octahedral symmetry, and half of pyritohedral symmetry. The mineral
cobaltite can have this symmetry form.
Abstractions sharing the solid's
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
and symmetry can be created from the cube and the tetrahedron. In the cube each face is bisected by a slanted edge. In the tetrahedron each edge is trisected, and each of the new vertices connected to a face center. (In
Conway polyhedron notation this is a gyro tetrahedron.)
Cartesian coordinates
The following points are vertices of a tetartoid pentagon under
tetrahedral symmetry
150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry
A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection ...
:
:(''a'', ''b'', ''c''); (−''a'', −''b'', ''c''); (−, −, ); (−''c'', −''a'', ''b''); (−, , ),
under the following conditions:
:,
:''n'' = ''a''
2''c'' − ''bc''
2,
:''d''
1 = ''a''
2 − ''ab'' + ''b''
2 + ''ac'' − 2''bc'',
:''d''
2 = ''a''
2 + ''ab'' + ''b''
2 − ''ac'' − 2''bc'',
:.
Geometric freedom
The
regular dodecahedron is a tetartoid with more than the required symmetry. The
triakis tetrahedron is a degenerate case with 12 zero-length edges. (In terms of the colors used above this means, that the white vertices and green edges are absorbed by the green vertices.)
Dual of triangular gyrobianticupola
A lower symmetry form of the regular dodecahedron can be constructed as the dual of a polyhedron constructed from two triangular
anticupola
In geometry, a cupola is a solid formed by joining two polygons, one (the base) with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares ...
connected base-to-base, called a ''triangular gyrobianticupola.'' It has D
3d symmetry, order 12. It has 2 sets of 3 identical pentagons on the top and bottom, connected 6 pentagons around the sides which alternate upwards and downwards. This form has a hexagonal cross-section and identical copies can be connected as a partial hexagonal honeycomb, but all vertices will not match.
:
Rhombic dodecahedron

The ''
rhombic dodecahedron'' is a
zonohedron with twelve rhombic faces and octahedral symmetry. It is dual to the
quasiregular cuboctahedron
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
(an
Archimedean solid) and occurs in nature as a crystal form. The rhombic dodecahedron packs together to fill space.
The ''rhombic dodecahedron'' can be seen as a degenerate
pyritohedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
where the 6 special edges have been reduced to zero length, reducing the pentagons into rhombic faces.
The rhombic dodecahedron has several
stellations, the
first of which is also a
parallelohedral spacefiller.
Another important rhombic dodecahedron, the
Bilinski dodecahedron, has twelve faces congruent to those of the
rhombic triacontahedron, i.e. the diagonals are in the ratio of the
golden ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0,
where the Greek letter phi ( ...
. It is also a
zonohedron and was described by
Bilinski in 1960. This figure is another spacefiller, and can also occur in non-periodic
spacefillings along with the rhombic triacontahedron, the rhombic icosahedron and rhombic hexahedra.
Other dodecahedra
There are 6,384,634 topologically distinct ''convex'' dodecahedra, excluding mirror images—the number of vertices ranges from 8 to 20.
Counting polyhedra
Numericana.com (2001-12-31). Retrieved on 2016-12-02. (Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)
Topologically distinct dodecahedra (excluding pentagonal and rhombic forms)
*Uniform polyhedra:
** Decagonal prism – 10 squares, 2 decagons, D10h symmetry, order 40.
** Pentagonal antiprism – 10 equilateral triangles, 2 pentagons, D5d symmetry, order 20
*Johnson solid
In geometry, a Johnson solid is a strictly convex polyhedron each face of which is a regular polygon. There is no requirement that each face must be the same polygon, or that the same polygons join around each vertex. An example of a Johns ...
s (regular faced):
**Pentagonal cupola
In geometry, the pentagonal cupola is one of the Johnson solids (). It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.
Formulae
The ...
– 5 triangles, 5 squares, 1 pentagon, 1 decagon, C5v symmetry, order 10
** Snub disphenoid – 12 triangles, D2d, order 8
** Elongated square dipyramid – 8 triangles and 4 squares, D4h symmetry, order 16
** Metabidiminished icosahedron – 10 triangles and 2 pentagons, C2v symmetry, order 4
*Congruent irregular faced: ( face-transitive)
** Hexagonal bipyramid – 12 isosceles triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non- colli ...
s, dual of hexagonal prism, D6h symmetry, order 24
** Hexagonal trapezohedron – 12 kites
A kite is a tethered heavier-than-air or lighter-than-air craft with wing surfaces that react against the air to create lift and drag forces. A kite consists of wings, tethers and anchors. Kites often have a bridle and tail to guide the face ...
, dual of hexagonal antiprism, D6d symmetry, order 24
** Triakis tetrahedron – 12 isosceles triangles, dual of truncated tetrahedron
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncating all 4 vertices of a regular tetrahedr ...
, Td symmetry, order 24
*Other less regular faced:
**Hendecagonal pyramid
A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrila ...
– 11 isosceles triangles and 1 regular hendecagon, C11v, order 11
** Trapezo-rhombic dodecahedron – 6 rhombi, 6 trapezoid
A quadrilateral with at least one pair of parallel sides is called a trapezoid () in American and Canadian English. In British and other forms of English, it is called a trapezium ().
A trapezoid is necessarily a convex quadrilateral in Eucli ...
s – dual of triangular orthobicupola, D3h symmetry, order 12
** Rhombo-hexagonal dodecahedron or ''elongated Dodecahedron'' – 8 rhombi and 4 equilateral hexagon
In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.
Regular hexagon
A ''regular hexagon'' h ...
s, D4h symmetry, order 16
** Truncated pentagonal trapezohedron, D5d, order 20, topologically equivalent to regular dodecahedron
Practical usage
Armand Spitz used a dodecahedron as the "globe" equivalent for his Digital Dome planetarium projector. based upon a suggestion from Albert Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
.
See also
* 120-cell
In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, heca ...
– a regular polychoron (4D polytope) whose surface consists of 120 dodecahedral cells
* – a dodecahedron shaped coccolithophore (a unicellular phytoplankton
Phytoplankton () are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words (), meaning 'plant', and (), meaning 'wanderer' or 'drifter'.
P ...
algae
Algae ( , ; : alga ) are any of a large and diverse group of photosynthetic, eukaryotic organisms. The name is an informal term for a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from ...
)
* Pentakis dodecahedron
* Roman dodecahedron
* Snub dodecahedron
* Truncated dodecahedron
In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.
Geometric relations
This polyhedron can be formed from a regular dodecahedron by tru ...
References
External links
*''Plato's Fourth Solid and the "Pyritohedron"'', by Paul Stephenson, 1993, The Mathematical Gazette, Vol. 77, No. 479 (Jul., 1993), pp. 220–22
Stellation of Pyritohedron
VRML models and animations of Pyritohedron and its stellations
*
Editable printable net of a dodecahedron with interactive 3D view
The Uniform Polyhedra
Origami Polyhedra
– Models made with Modular Origami
The Encyclopedia of Polyhedra
*[http://www.bodurov.com/VectorVisualizer/?vectors=-0.94/-2.885/-3.975/-1.52/-4.67/-0.94v-3.035/0/-3.975/-4.91/0/-0.94v3.975/-2.885/-0.94/1.52/-4.67/0.94v1.52/-4.67/0.94/-1.52/-4.67/-0.94v0.94/-2.885/3.975/1.52/-4.67/0.94v-3.975/-2.885/0.94/-1.52/-4.67/-0.94v-3.975/-2.885/0.94/-4.91/0/-0.94v-3.975/2.885/0.94/-4.91/0/-0.94v-3.975/2.885/0.94/-1.52/4.67/-0.94v-2.455/1.785/3.975/-3.975/2.885/0.94v-2.455/-1.785/3.975/-3.975/-2.885/0.94v-1.52/4.67/-0.94/-0.94/2.885/-3.975v4.91/0/0.94/3.975/-2.885/-0.94v3.975/2.885/-0.94/2.455/1.785/-3.975v2.455/-1.785/-3.975/3.975/-2.885/-0.94v1.52/4.67/0.94/-1.52/4.67/-0.94v3.035/0/3.975/0.94/2.885/3.975v0.94/2.885/3.975/-2.455/1.785/3.975v-2.455/1.785/3.975/-2.455/-1.785/3.975v-2.455/-1.785/3.975/0.94/-2.885/3.975v0.94/-2.885/3.975/3.035/0/3.975v2.455/1.785/-3.975/-0.94/2.885/-3.975v-0.94/2.885/-3.975/-3.035/0/-3.975v-3.035/0/-3.975/-0.94/-2.885/-3.975v-0.94/-2.885/-3.975/2.455/-1.785/-3.975v2.455/-1.785/-3.975/2.455/1.785/-3.97v3.035/0/3.975/4.91/0/0.94v4.91/0/0.94/3.975/2.885/-0.94v3.975/2.885/-0.94/1.52/4.67/0.94v1.52/4.67/0.94/0.94/2.885/3.975 Dodecahedron 3D Visualization]
Stella: Polyhedron Navigator
Software used to create some of the images on this page.
How to make a dodecahedron from a Styrofoam cube
{{Authority control
Individual graphs
Planar graphs
Platonic solids
12 (number)