Small Stellated Dodecahedron
In geometry, the small stellated dodecahedron is a Kepler–Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol . It is one of four nonconvex List of regular polytopes#Non-convex 2, regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex. It shares the same vertex arrangement as the convex regular icosahedron. It also shares the same edge arrangement with the great icosahedron, with which it forms Great complex icosidodecahedron, a degenerate uniform compound figure. It is the List of Wenninger polyhedron models#Stellations of dodecahedron, second of four stellations of the dodecahedron (including the original dodecahedron itself). The small stellated dodecahedron can be constructed analogously to the pentagram, its two-dimensional analogue, via the extension of the edges (1-faces) of the core polytope until a point is reached where they intersect. Construction and properties The small stellated dodecahedron is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pentagram
A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle around the five points creates a similar symbol referred to as the pentacle, which is used widely by Wiccans and in paganism, or as a sign of life and connections. The word ''pentagram'' comes from the Greek language, Greek word πεντάγραμμον (''pentagrammon''), from πέντε (''pente''), "five" + γραμμή (''grammē''), "line". The word pentagram refers to just the star and the word pentacle refers to the star within a circle, although there is some overlap in usage. The word ''pentalpha'' is a 17th-century revival of a post-classical Greek name of the shape. History Early history Early pentagrams have been found on Sumerian pottery from Ur c. 3500 Common Era, BCE, and the five-pointed star was at various times the symbol of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kepler–Poinsot Polyhedron
In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra. They may be obtained by stellating the regular convex dodecahedron and icosahedron, and differ from these in having regular pentagrammic faces or vertex figures. They can all be seen as three-dimensional analogues of the pentagram in one way or another. Characteristics Sizes The great icosahedron edge length is \phi^4 = \tfrac12\bigl(7+3\sqrt5\,\bigr) times the original icosahedron edge length. The small stellated dodecahedron, great dodecahedron, and great stellated dodecahedron edge lengths are respectively \phi^3 = 2+\sqrt5, \phi^2 = \tfrac12\bigl(3+\sqrt5\,\bigr), and \phi^5 = \tfrac12\bigl(11+5\sqrt5\,\bigr) times the original dodecahedron edge length. Non-convexity These figures have pentagrams (star pentagons) as faces or vertex figures. The small and great stellated dodecahedron have nonconvex regular pentagram faces. The great dodecahedron and great icosahedron have convex polyg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bring's Curve
In mathematics, Bring's curve (also called Bring's surface and, by analogy with the Klein quartic, the Bring sextic) is the curve in the projective space \mathbb^4 cut out by the homogeneous equations :v+w+x+y+z=v^2+w^2+x^2+y^2+z^2=v^3+w^3+x^3+y^3+z^3=0. It was named by after Erland Samuel Bring who studied a similar construction in 1786 in a Promotionschrift submitted to the University of Lund. Note that the roots ''x''i of the Bring quintic x^5+ax+b = 0 satisfies Bring's curve since \sum_^5 x_i^k = 0 for k = 1,2,3. The automorphism group of the curve is the symmetric group ''S''5 of order 120, given by permutations of the 5 coordinates. This is the largest possible automorphism group of a genus 4 complex curve. The curve can be realized as a triple cover of the sphere branched in 12 points, and is the Riemann surface associated to the small stellated dodecahedron. It has genus 4. The full group of symmetries (including reflections) is the direct product S_\times\mathbb_, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Branch Points
In the mathematical field of complex analysis, a branch point of a multivalued function is a point such that if the function is n-valued (has n values) at that point, all of its neighborhoods contain a point that has more than n values. Multi-valued functions are rigorously studied using Riemann surfaces, and the formal definition of branch points employs this concept. Branch points fall into three broad categories: algebraic branch points, transcendental branch points, and logarithmic branch points. Algebraic branch points most commonly arise from functions in which there is an ambiguity in the extraction of a root, such as solving the equation w^2=z for w as a function of z. Here the branch point is the origin, because the analytic continuation of any solution around a closed loop containing the origin will result in a different function: there is non-trivial monodromy. Despite the algebraic branch point, the function w is well-defined as a multiple-valued function and, in an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. Examples of Riemann surfaces include Graph of a function, graphs of Multivalued function, multivalued functions such as √''z'' or log(''z''), e.g. the subset of pairs with . Every Riemann surface is a Surface (topology), surface: a two-dimensional real manifold, but it contains more structure (specifically a Complex Manifold, complex structure). Conversely, a two-dimensional real manifold can be turned into a Riemann surface (usually in several inequivalent ways) if and only if it is orientable and Metrizabl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemann Sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a Mathematical model, model of the extended complex plane (also called the closed complex plane): the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value \infty for infinity. With the Riemann model, the point \infty is near to very large numbers, just as the point 0 is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as 1/0=\infty well-behaved. For example, any rational function on the complex plane can be extended to a holomorphic function on the Riemann sphere, with the Pole (complex analysis), poles of the rational function mapping to infinity. More generally, any meromorphic function can be thought of as a holomorphic function whose codomain is the Riemann sphere. In geometr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Branched Covering
In mathematics, a branched covering is a map that is almost a covering map, except on a small set. In topology In topology, a map is a ''branched covering'' if it is a covering map everywhere except for a nowhere dense set known as the branch set. Examples include the map from a wedge of circles to a single circle, where the map is a homeomorphism on each circle. In algebraic geometry In algebraic geometry, the term branched covering is used to describe morphisms f from an algebraic variety V to another one W, the two dimensions being the same, and the typical fibre of f being of dimension 0. In that case, there will be an open set W' of W (for the Zariski topology) that is dense in W, such that the restriction of f to W' (from V' = f^(W') to W', that is) is unramified. Depending on the context, we can take this as local homeomorphism for the strong topology, over the complex numbers, or as an étale morphism in general (under some slightly stronger hypotheses, on flatness ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Felix Klein
Felix Christian Klein (; ; 25 April 1849 – 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations between geometry and group theory. His 1872 Erlangen program classified geometries by their basic symmetry groups and was an influential synthesis of much of the mathematics of the time. During his tenure at the University of Göttingen, Klein was able to turn it into a center for mathematical and scientific research through the establishment of new lectures, professorships, and institutes. His Felix Klein Protocols, seminars covered most areas of mathematics then known as well as their applications. Klein also devoted considerable time to mathematical instruction and promoted mathematics education reform at all grade levels in Germany and abroad. He became the first president of the International Commission on Mathematical Instruction in 1908 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Louis Poinsot
Louis Poinsot (; 3 January 1777 – 5 December 1859) was a French mathematician and physicist. Poinsot was the inventor of geometrical mechanics, showing how a system of forces acting on a rigid body could be resolved into a single force and a couple. Life :Everyone makes for himself a clear idea of the motion of a point, that is to say, of the motion of a corpuscle which one supposes to be infinitely small, and which one reduces by thought in some way to a mathematical point. ::—Louis Poinsot, ''Théorie nouvelle de la rotation des corps'' (1834) Louis was born in Paris on 3 January 1777. He attended the school of Lycée Louis-le-Grand for secondary preparatory education for entrance to the famous École Polytechnique. In October 1794, at age 17, he took the École Polytechnique entrance exam and failed the algebra section but was still accepted. A student there for two years, he left in 1797 to study at École des Ponts et Chaussées to become a civil engineer. Although ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler Characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by \chi (Greek alphabet, Greek lower-case letter chi (letter), chi). The Euler characteristic was originally defined for polyhedron, polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. It was stated for Platonic solids in 1537 in an unpublished manuscript by Francesco Maurolico. Leonhard Euler, for whom the concept is named, introduced it for convex polyhedra more generally but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology (mathematics), homology and, more abstractly, homological algebra. Polyhedra The Euler characteristic was ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Genus (mathematics)
In mathematics, genus (: genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. Topology Orientable surfaces The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic \chi, via the relationship \chi=2-2g for closed surfaces, where g is the genus. For surfaces with b boundary components, the equation reads \chi=2-2g-b. In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |