HOME





Zirconium(IV) Iodide
Zirconium(IV) iodide is the chemical compound with the formula Zr I4. It is the most readily available iodide of zirconium. It is an orange-coloured solid that degrades in the presence of water. The compound was once prominent as an intermediate in the purification of zirconium metal. Structure Like most binary metal halides, zirconium(IV) iodide adopts a polymeric structure. As characterized by X-ray crystallography, the compound consists of octahedral Zr(IV) centers interconnected by four doubly bridging iodide ligands. The Zr-I distances of 2.692 (terminal) and 3.030 Å Synthesis and reactions This compound can be prepared by heating zirconium metal and an excess of iodine. . The solid is purified by sublimation (400 °C, 10-4 mm Hg). : Pyrolysis of zirconium(IV) iodide gas by contact with a hot wire was the first industrial process for the commercial production of pure ductile metallic zirconium. This crystal bar process was developed by Anton Eduard van Arkel and Jan He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoclinic
In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three Vector (geometric), vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic system. They form a parallelogram prism (geometry), prism. Hence two pairs of vectors are perpendicular (meet at right angles), while the third pair makes an angle other than 90°. Bravais lattices Two monoclinic Bravais lattices exist: the primitive monoclinic and the base-centered monoclinic. For the base-centered monoclinic lattice, the primitive cell has the shape of an oblique rhombic prism;See , row mC, column Primitive, where the cell parameters are given as a1 = a2, α = β it can be constructed because the two-dimensional centered rectangular base layer can also be described with primitive rhombic axes. The length a of the primitive cell below equals \frac \sqrt of the conventional cell above. Crystal class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

X-ray Crystallography
X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring the angles and intensities of the X-ray diffraction, a crystallography, crystallographer can produce a three-dimensional picture of the density of electrons within the crystal and the positions of the atoms, as well as their chemical bonds, crystallographic disorder, and other information. X-ray crystallography has been fundamental in the development of many scientific fields. In its first decades of use, this method determined the size of atoms, the lengths and types of chemical bonds, and the atomic-scale differences between various materials, especially minerals and alloys. The method has also revealed the structure and function of many biological molecules, including vitamins, drugs, proteins and nucleic acids such as DNA. X-ray crystall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iodides
An iodide ion is I−. Compounds with iodine in formal oxidation state −1 are called iodides. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate. Worldwide, iodine deficiency affects two billion people and is the leading preventable cause of intellectual disability. Structure and characteristics of inorganic iodides Iodide is one of the largest monatomic anions. It is assigned a radius of around 206 picometers. For comparison, the lighter halides are considerably smaller: bromide (196 pm), chloride (181 pm), and fluoride (133 pm). In part because of its size, iodide forms relatively weak bonds with most elements. Most iodide salts are soluble in water, but often less so than the related chlorides and bromides. Iodide, being large, is less hydrophilic compared to the smaller anions. One consequence of this is that sodium iodide is highly soluble in acetone, whereas sodium chloride is not. The low ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zirconium Triiodide
Zirconium(III) iodide is an inorganic compound with the formula ZrI3. Preparation Like other group 4 trihalides, zirconium(III) iodide can be prepared from zirconium(IV) iodide by high-temperature reduction with zirconium metal, although incomplete reaction and contamination of the product with excess metal often occurs. :3 ZrI4 + Zr → 4 ZrI3 An alternative is to crystallise zirconium(III) iodide from a solution of zirconium(III) in aluminium triiodide. The solution is prepared by reducing a eutectic solution of ZrI4 in liquid AlI3 at a temperature of 280–300 °C with metallic zirconium or aluminium. Structure and bonding Zirconium(III) iodide has a lower magnetic moment than is expected for the d1 metal ion Zr3+, indicating non-negligible Zr–Zr bonding. The crystal structure of zirconium(III) iodide is based on hexagonal close packing of iodide ions with one third of the octahedral In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with ei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zeitschrift Für Anorganische Und Allgemeine Chemie
The ''Zeitschrift für anorganische und allgemeine Chemie'' (''Journal of Inorganic and General Chemistry'') is a semimonthly peer-reviewed scientific journal covering inorganic chemistry, published by Wiley-VCH. The editors-in-chief are Thomas F. Fässler, Christian Limberg, Guodong Qian, and David Scheschkewitz. Originally the journal was published in German, but nowadays it is completely in English. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2022 impact factor of 1.4. History In 1892, Gerhard Krüss (Ludwig Maximilian University of Munich), established the journal under the name ''Zeitschrift für Anorganische Chemie''. Krüss died three years later, and was succeeded by Richard Lorenz and Walther Nernst Walther Hermann Nernst (; 25 June 1864 – 18 November 1941) was a German physical chemist known for his work in thermodynamics, physical chemistry, electrochemistry, and solid-sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jan Hendrik De Boer
Jan Hendrik de Boer (19 March 1899 – 25 April 1971) was a Dutch physicist and chemist. De Boer was born in Ruinen, De Wolden, and died in The Hague. He studied at the University of Groningen and was later employed in industry. Together with Anton Eduard van Arkel, de Boer developed a chemical transport reaction for titanium, zirconium, and hafnium known as the crystal bar process. In a closed vessel the metal reacts with iodine at elevated temperature forming the iodide. At a tungsten filament of 1700 °C the reverse reaction occurs, and the iodine and the metal are set free. The metal forms a solid coating at the tungsten filament and the iodine can react with additional metal, resulting in a steady turnover. ::M + 2I2 (>400 °C) → MI4 ::MI4 (1700 °C) → M + 2I2 This process is now known as Van Arkel–de Boer process. However, in 1937 De Boer and Evert Verwey reported that many transition-metal oxides (such as NiO) with a partially filled d-b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anton Eduard Van Arkel
Anton Eduard van Arkel, (19 November 1893 – 14 March 1976) was a Dutch chemist. Biography In the early 1920s Van Arkel, together with Jan Hendrik de Boer, working for Philips NV, developed the Van Arkel–de Boer process for the preparation of pure titanium: the decomposition of the vapor of titanium tetrachloride on an incandescent tungsten filament. This method was later used for other metals, including zirconium and hafnium. In 1941 he published the Van Arkel–Ketelaar triangle, a diagrammatic method to depict the chemical bonds that would form between elements in the periodic table. Van Arkel suggested the names "pnictogen" and "pnictide" to refer to chemical elements in group 15 (the nitrogen group or nitrogen family) of the periodic table. In 1962 Van Arkel became member of the Royal Netherlands Academy of Arts and Sciences. Van Arkel published at least one textbook, ''Molecules and Crystals'', in 1941 in his native language. In 1949 this work was translated to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crystal Bar Process
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macroscopic single crystals are usually identifiable by their geometrical shape, consisting of flat faces with specific, characteristic orientations. The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification. The word ''crystal'' derives from the Ancient Greek word (), meaning both "ice" and " rock crystal", from (), "icy cold, frost". Examples of large crystals include snowflakes, diamonds, and table salt. Most inorganic solids are not crystals but polycrystals, i.e. many microscopic crystals fused together into a single solid. Polycrystals include most metals, rocks, ceramics, and ice. A third categor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pyrolysis
Pyrolysis is a process involving the Bond cleavage, separation of covalent bonds in organic matter by thermal decomposition within an Chemically inert, inert environment without oxygen. Etymology The word ''pyrolysis'' is coined from the Greek language, Greek-derived morpheme, elements ''pyro-'' (from Ancient Greek : - "fire, heat, fever") and ''lysis'' ( : - "separation, loosening"). Applications Pyrolysis is most commonly used in the treatment of organic compound, organic materials. It is one of the processes involved in the charring of wood or pyrolysis of biomass. In general, pyrolysis of organic substances produces volatile products and leaves Char (chemistry), char, a carbon-rich solid residue. Extreme pyrolysis, which leaves mostly carbon as the residue, is called carbonization. Pyrolysis is considered one of the steps in the processes of gasification or combustion. Laypeople often confuse pyrolysis gas with syngas. Pyrolysis gas has a high percentage of heavy tar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iodine
Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at , and boils to a violet gas at . The element was discovered by the French chemist Bernard Courtois in 1811 and was named two years later by Joseph Louis Gay-Lussac, after the Ancient Greek , meaning 'violet'. Iodine occurs in many oxidation states, including iodide (I−), iodate (), and the various periodate anions. As the heaviest essential mineral nutrient, iodine is required for the synthesis of thyroid hormones. Iodine deficiency affects about two billion people and is the leading preventable cause of intellectual disabilities. The dominant producers of iodine today are Chile and Japan. Due to its high atomic number and ease of attachment to organic compounds, it has also found favour as a non-toxic radiocontrast material. Because of the spec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pearson Symbol
The Pearson symbol, or Pearson notation, is used in crystallography as a means of describing a crystal structure. It was originated by William Burton Pearson and is used extensively in Pearson's handbook of crystallographic data for intermetallic phases. The symbol is made up of two letters followed by a number. For example: * Diamond structure, cF8 * Rutile structure, tP6 Construction The two letters in the Pearson symbol specify the Bravais lattice, and more specifically, the lower-case letter specifies the Crystal system, crystal family, while the upper-case letter the Lattice (group), lattice type. The number at the end of the Pearson symbol gives the number of the atoms in the conventional unit cell (atoms which satisfy 1 > x,y,z \geq 0 for the atom's position (x,y,z) in the unit cell).
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zirconium
Zirconium is a chemical element; it has Symbol (chemistry), symbol Zr and atomic number 40. First identified in 1789, isolated in impure form in 1824, and manufactured at scale by 1925, pure zirconium is a lustrous transition metal with a greyish-white color that closely resembles hafnium and, to a lesser extent, titanium. It is solid at room temperature, Ductility, ductile, malleable and corrosion-resistant. The name ''zirconium'' is derived from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian Language, Persian ''Jargoon, zargun'' (zircon; ''zar-gun'', "gold-like" or "as gold"). Besides zircon, zirconium occurs in over 140 other minerals, including baddeleyite and eudialyte; most zirconium is produced as a byproduct of minerals mined for titanium and tin. Zirconium forms a variety of inorganic chemistry, inorganic compounds, such as zirconium dioxide, and organometallic compounds, such as zirconocene dichloride. Five isotope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]