Singular Cardinals Hypothesis
In set theory, the singular cardinals hypothesis (SCH) arose from the question of whether the least cardinal number for which the generalized continuum hypothesis (GCH) might fail could be a singular cardinal. According to Mitchell (1992), the singular cardinals hypothesis is: :If ''κ'' is any singular strong limit cardinal, then 2''κ'' = ''κ''+. Here, ''κ''+ denotes the successor cardinal of ''κ''. Since SCH is a consequence of GCH, which is known to be consistent with ZFC, SCH is consistent with ZFC. The negation of SCH has also been shown to be consistent with ZFC, if one assumes the existence of a sufficiently large cardinal number. In fact, by results of Moti Gitik, ZFC + ¬SCH is equiconsistent with ZFC + the existence of a measurable cardinal ''κ'' of Mitchell order ''κ''++. Another form of the SCH is the following statement: :2cf(''κ'') \kappa^+ —a violation of the SCH. Gitik, building on work of Woodin, was able to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of Paradoxes of set theory, paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generic Ultrapowers
Generic or generics may refer to: In business * Generic term, a common name used for a range or class of similar things not protected by trademark * Generic brand, a brand for a product that does not have an associated brand or trademark, other than the trading name of the business providing the product * Generic trademark, a trademark that sometimes or usually replaces a common term in colloquial usage * Generic drug, a drug identified by its chemical name rather than its brand name In computer programming * Generic function, a computer programming entity made up of all methods having the same name * Generic programming, a computer programming paradigm based on method/functions or classes defined irrespective of the concrete data types used upon instantiation ** Generics in Java In linguistics *A pronoun or other word used with a less specific meaning, such as: ** generic ''you'' ** generic ''he'' or generic ''she'' ** generic ''they'' * Generic mood, a grammatical mood used ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trans
Trans- is a Latin prefix meaning "across", "beyond", or "on the other side of". Used alone, trans may refer to: Sociology * Trans, a sociological term which may refer to: ** Transgender, people who identify themselves with a gender that differs from their sex societally designated/assigned at birth ** Transsexual, people who seek to transition from their birth-assigned sex to another via therapy and/or surgery ** Trans*, a broader term for identities including transgender and transsexual Arts, entertainment, and media * Trans (festival), a former festival in Belfast, Northern Ireland, United Kingdom * Trans (1982 film), a Venezuelan short documentary film * ''Trans'' (1998 film), an American film * Trans Corp, an Indonesian business unit of CT Corp in the fields of media, lifestyle, and entertainment ** Trans Media, a media subsidiary of Trans Corp *** Trans TV, an Indonesian television network *** Trans7, an Indonesian television network Literature * '' Tran ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamenta Mathematicae
''Fundamenta Mathematicae'' is a peer-reviewed scientific journal of mathematics with a special focus on the foundations of mathematics, concentrating on set theory, mathematical logic, topology and its interactions with algebra, and dynamical systems. The first specialized journal in the field of mathematics, originally it covered only topology, set theory, and foundations of mathematics..... It is published by the Mathematics Institute of the Polish Academy of Sciences. History The journal was conceived by Zygmunt Janiszewski as a means to foster mathematical research in Poland.According to and to the introduction to the 100th volume of the journal (1978, pp=1–2). These two sources cite an article written by Janiszewski himself in 1918 and titled "''On the needs of Mathematics in Poland''". Janiszewski posited that, to achieve its goal, the journal should not compel Polish mathematicians to submit articles written exclusively in Polish, and should be devoted only to a sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thomas Jech
Thomas J. Jech (, ; born 29 January 1944 in Prague) is a mathematician specializing in set theory who was at Penn State for more than 25 years. Life He was educated at Charles University (his advisor was Petr Vopěnka) and from 2000 is at thInstitute of Mathematicsof the Academy of Sciences of the Czech Republic. Work Jech's research also includes mathematical logic, algebra, analysis, topology, and measure theory. Jech gave the first published proof of the consistency of the existence of a Suslin line. With Karel Prikry, he introduced the notion of precipitous ideal. He gave several models where the axiom of choice failed, for example one with ω1 measurable. The concept of a Jech–Kunen tree is named after him and Kenneth Kunen Herbert Kenneth Kunen (August 2, 1943August 14, 2020) was a professor of mathematics at the University of Wisconsin–Madison who worked in set theory and its applications to various areas of mathematics, such as set-theoretic topology a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strongly Compact Cardinal
In set theory, a strongly compact cardinal is a certain kind of large cardinal. An uncountable cardinal κ is strongly compact if and only if every κ-complete filter can be extended to a κ-complete ultrafilter. Strongly compact cardinals were originally defined in terms of infinitary logic, where logical operators are allowed to take infinitely many operands. The logic on a regular cardinal κ is defined by requiring the number of operands for each operator to be less than κ; then κ is strongly compact if its logic satisfies an analog of the compactness In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it ... property of finitary logic. Specifically, a statement which follows from some other collection of statements should also follow from some subcollection having cardinality less ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robert M
The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (''Hrōþiberhtaz''). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of '' Hruod'' () "fame, glory, honour, praise, renown, godlike" and ''berht'' "bright, light, shining"). It is the second most frequently used given name of ancient Germanic origin.Reaney & Wilson, 1997. ''Dictionary of English Surnames''. Oxford University Press. It is also in use as a surname. Another commonly used form of the name is Rupert. After becoming widely used in Continental Europe, the name entered England in its Old French form ''Robert'', where an Old English cognate form (''Hrēodbēorht'', ''Hrodberht'', ''Hrēodbēorð'', ''Hrœdbœrð'', ''Hrœdberð'', ''Hrōðberχtŕ'') had existed before the Norman Conquest. The feminine version is Roberta. The Italian, Portuguese, and Spanish form is Roberto. Robert is also a common name in many Germanic languages, including En ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Proper Forcing Axiom
In the mathematical field of set theory, the proper forcing axiom (''PFA'') is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings. Statement A forcing or partially ordered set P is proper if for all regular uncountable cardinals \lambda , forcing with P preserves stationary subsets of lambda\omega. The proper forcing axiom asserts that if P is proper and D_\alpha is a dense subset of P for each \alpha < \omega_1, then there is a filter such that is nonempty for all . The class of proper forcings, to which PFA can be applied, is rather large. For example, standard arguments show that if is ccc or [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inner Model Theory
In set theory, inner model theory is the study of certain models of ZFC or some fragment or strengthening thereof. Ordinarily these models are transitive subsets or subclasses of the von Neumann universe ''V'', or sometimes of a generic extension of ''V''. Inner model theory studies the relationships of these models to determinacy, large cardinals, and descriptive set theory. Despite the name, it is considered more a branch of set theory than of model theory. Examples *The class of all sets is an inner model containing all other inner models. *The first non-trivial example of an inner model was the constructible universe ''L'' developed by Kurt Gödel. Every model ''M'' of ZF has an inner model ''L''M satisfying the axiom of constructibility, and this will be the smallest inner model of ''M'' containing all the ordinals of ''M''. Regardless of the properties of the original model, ''L''''M'' will satisfy the generalized continuum hypothesis and combinatorial axioms such as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supercompact Cardinal
In set theory, a supercompact cardinal is a type of large cardinal independently introduced by Solovay and Reinhardt. They display a variety of reflection properties. Formal definition If \lambda is any ordinal, \kappa is \lambda-supercompact means that there exists an elementary embedding j from the universe V into a transitive inner model M with critical point \kappa, j(\kappa)>\lambda and :^\lambda M\subseteq M \,. That is, M contains all of its \lambda-sequences. Then \kappa is supercompact means that it is \lambda-supercompact for all ordinals \lambda. Alternatively, an uncountable cardinal \kappa is supercompact if for every A such that \vert A\vert\geq\kappa there exists a normal measure over , in the following sense. is defined as follows: : := \. An ultrafilter U over is ''fine'' if it is \kappa-complete and \ \in U, for every a \in A. A normal measure over is a fine ultrafilter U over with the additional property that every function f: \to A such th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ultrafilter (set Theory)
In the mathematical field of set theory, an ultrafilter on a set (mathematics), set X is a ''maximal filter'' on the set X. In other words, it is a collection of subsets of X that satisfies the definition of a filter (set theory), filter on X and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of X that is also a filter. (In the above, by definition a filter on a set does not contain the empty set.) Equivalently, an ultrafilter on the set X can also be characterized as a filter on X with the property that for every subset A of X either A or its complement X\setminus A belongs to the ultrafilter. Ultrafilters on sets are an important special instance of Ultrafilter, ultrafilters on partially ordered sets, where the partially ordered set consists of the power set \wp(X) and the partial order is subset inclusion \,\subseteq. This article deals specifically with ultrafilters on a set and does not cover the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |