Schur-concave
   HOME





Schur-concave
In mathematics, a Schur-convex function, also known as S-convex, isotonic function and order-preserving function is a function f: \mathbb^d\rightarrow \mathbb that for all x,y\in \mathbb^d such that x is majorized by y, one has that f(x)\le f(y). Named after Issai Schur, Schur-convex functions are used in the study of majorization. A function ''f'' is 'Schur-concave' if its negative, −''f'', is Schur-convex. Properties Every function that is convex and symmetric (under permutations of the arguments) is also Schur-convex. Every Schur-convex function is symmetric, but not necessarily convex. If f is (strictly) Schur-convex and g is (strictly) monotonically increasing, then g\circ f is (strictly) Schur-convex. If g is a convex function defined on a real interval, then \sum_^n g(x_i) is Schur-convex. Schur–Ostrowski criterion If ''f'' is symmetric and all first partial derivatives exist, then ''f'' is Schur-convex if and only if : (x_i - x_j)\left(\frac - \frac\rig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rényi Entropy
In information theory, the Rényi entropy is a quantity that generalizes various notions of Entropy (information theory), entropy, including Hartley entropy, Shannon entropy, collision entropy, and min-entropy. The Rényi entropy is named after Alfréd Rényi, who looked for the most general way to quantify information while preserving additivity for independent events. In the context of fractal dimension estimation, the Rényi entropy forms the basis of the concept of generalized dimensions. The Rényi entropy is important in ecology and statistics as diversity indices, index of diversity. The Rényi entropy is also important in quantum information, where it can be used as a measure of Quantum entanglement, entanglement. In the Heisenberg XY spin chain model, the Rényi entropy as a function of can be calculated explicitly because it is an automorphic function with respect to a particular subgroup of the modular group. In theoretical computer science, the min-entropy is used in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Majorization
In mathematics, majorization is a preorder on vector space, vectors of real numbers. For two such vectors, \mathbf,\ \mathbf \in \mathbb^n, we say that \mathbf weakly majorizes (or dominates) \mathbf from below, commonly denoted \mathbf \succ_w \mathbf, when : \sum_^k x_i^ \geq \sum_^k y_i^ for all k=1,\,\dots,\,n, where x_i^ denotes ith largest entry of x. If \mathbf, \mathbf further satisfy \sum_^n x_i = \sum_^n y_i, we say that \mathbf majorizes (or dominates) \mathbf , commonly denoted \mathbf \succ \mathbf. Both weak majorization and majorization are partially ordered set, partial orders for vectors whose entries are non-decreasing, but only a preorder for general vectors, since majorization is agnostic to the ordering of the entries in vectors, e.g., the statement (1,2)\prec (0,3) is simply equivalent to (2,1)\prec (3,0). Specifically, \mathbf \succ \mathbf \wedge \mathbf \succ \mathbf if and only if \mathbf, \mathbf are permutations of each other. Similarly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Issai Schur
Issai Schur (10 January 1875 – 10 January 1941) was a Russian mathematician who worked in Germany for most of his life. He studied at the Humboldt University of Berlin, University of Berlin. He obtained his doctorate in 1901, became lecturer in 1903 and, after a stay at the University of Bonn, professor in 1919. As a student of Ferdinand Georg Frobenius, he worked on group representations (the subject with which he is most closely associated), but also in combinatorics and Quadratic residue#The Pólya–Vinogradov inequality, number theory and even theoretical physics. He is perhaps best known today for his result on the existence of the Schur decomposition and for his work on group representations (Schur's lemma). Schur published under the name of both I. Schur, and J. Schur, the latter especially in ''Journal für die reine und angewandte Mathematik''. This has led to some confusion. Childhood Issai Schur was born into a Jewish family, the son of the businessman Moses Schur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Function
In mathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of a function, graph of the function lies above or on the graph between the two points. Equivalently, a function is convex if its epigraph (mathematics), ''epigraph'' (the set of points on or above the graph of the function) is a convex set. In simple terms, a convex function graph is shaped like a cup \cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap \cap. A twice-differentiable function, differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain of a function, domain. Well-known examples of convex functions of a single variable include a linear function f(x) = cx (where c is a real number), a quadratic function cx^2 (c as a nonnegative real number) and an exponential function ce^x (c as a nonnegative real number). Convex functions pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Function
In mathematics, a function of n variables is symmetric if its value is the same no matter the order of its arguments. For example, a function f\left(x_1,x_2\right) of two arguments is a symmetric function if and only if f\left(x_1,x_2\right) = f\left(x_2,x_1\right) for all x_1 and x_2 such that \left(x_1,x_2\right) and \left(x_2,x_1\right) are in the domain of f. The most commonly encountered symmetric functions are polynomial functions, which are given by the symmetric polynomials. A related notion is alternating polynomials, which change sign under an interchange of variables. Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric k-tensors on a vector space V is isomorphic to the space of homogeneous polynomials of degree k on V. Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry. Symmetrization Given any function f in n variab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shannon Entropy
Shannon may refer to: People * Shannon (given name) * Shannon (surname) * Shannon (American singer), stage name of singer Brenda Shannon Greene (born 1958) * Shannon (South Korean singer), British-South Korean singer and actress Shannon Arrum Williams (born 1998) * Shannon, intermittent stage name of English singer-songwriter Marty Wilde (born 1939) Places Australia * Shannon, Tasmania, a locality * Hundred of Shannon, a cadastral unit in South Australia * Shannon, a former name for the area named Calomba, South Australia since 1916 * Shannon River (Western Australia) * Shannon, Western Australia, a locality in the Shire of Manjimup * Shannon National Park, a national park in Western Australia Canada * Shannon, New Brunswick, a community * Shannon, Quebec, a city * Shannon Bay, former name of Darrell Bay, British Columbia * Shannon Falls, a waterfall in British Columbia Ireland * River Shannon, the longest river in Ireland ** Shannon Cave, a subterranean section o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elementary Symmetric Polynomial
In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials. That is, any symmetric polynomial is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree in variables for each positive integer , and it is formed by adding together all distinct products of distinct variables. Definition The elementary symmetric polynomials in variables , written for , are defined by :\begin e_1 (X_1, X_2, \dots, X_n) &= \sum_ X_a,\\ e_2 (X_1, X_2, \dots, X_n) &= \sum_ X_a X_b,\\ e_3 (X_1, X_2, \dots, X_n) &= \sum_ X_a X_b X_c,\\ \end and so forth, ending with : e_n (X_1, X_2, \dots,X_n) = X_1 X_2 \cdots X_n. In general, for we define : e_k (X_1 , \ldots , X_n )=\s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variance
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviation; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications is that, unlike the standard deviation, its units differ from the random variable, which is why the standard devi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Deviation
In statistics, the standard deviation is a measure of the amount of variation of the values of a variable about its Expected value, mean. A low standard Deviation (statistics), deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range. The standard deviation is commonly used in the determination of what constitutes an outlier and what does not. Standard deviation may be abbreviated SD or std dev, and is most commonly represented in mathematical texts and equations by the lowercase Greek alphabet, Greek letter Sigma, σ (sigma), for the population standard deviation, or the Latin script, Latin letter ''s'', for the sample standard deviation. The standard deviation of a random variable, Sample (statistics), sample, statistical population, data set, or probability distribution is the square root of its variance. (For a finite population, v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Median Absolute Deviation
In statistics, the median absolute deviation (MAD) is a robust measure of the variability of a univariate sample of quantitative data. It can also refer to the population parameter that is estimated by the MAD calculated from a sample. For a univariate data set ''X''1, ''X''2, ..., ''Xn'', the MAD is defined as the median of the absolute deviations from the data's median \tilde=\operatorname(X) : : \operatorname = \operatorname( , X_i - \tilde, ) that is, starting with the residuals (deviations) from the data's median, the MAD is the median of their absolute values. Example Consider the data (1, 1, 2, 2, 4, 6, 9). It has a median value of 2. The absolute deviations about 2 are (1, 1, 0, 0, 2, 4, 7) which in turn have a median value of 1 (because the sorted absolute deviations are (0, 0, 1, 1, 2, 4, 7)). So the median absolute deviation for this data is 1. Uses The median absolute deviation is a measure of statistical dispersion. Moreover, the MAD is a rob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exchangeable Random Variables
In statistics, an exchangeable sequence of random variables (also sometimes interchangeable) is a sequence ''X''1, ''X''2, ''X''3, ... (which may be finitely or infinitely long) whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered. In other words, the joint distribution is invariant to finite permutation. Thus, for example the sequences : X_1, X_2, X_3, X_4, X_5, X_6 \quad \text \quad X_3, X_6, X_1, X_5, X_2, X_4 both have the same joint probability distribution. It is closely related to the use of independent and identically distributed random variables in statistical models. Exchangeable sequences of random variables arise in cases of simple random sampling. Definition Formally, an exchangeable sequence of random variables is a finite or infinite sequence ''X''1, ''X''2, ''X''3, ... of random variables such that for any finite permutation σ of the indices 1, 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]