HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a real-valued function is called convex if the
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
between any two distinct points on the graph of the function lies above or on the graph between the two points. Equivalently, a function is convex if its ''epigraph'' (the set of points on or above the graph of the function) is a
convex set In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is n ...
. In simple terms, a convex function graph is shaped like a cup \cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap \cap. A twice- differentiable function of a single variable is convex
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
its
second derivative In calculus, the second derivative, or the second-order derivative, of a function is the derivative of the derivative of . Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the secon ...
is nonnegative on its entire domain. Well-known examples of convex functions of a single variable include a
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
f(x) = cx (where c is a
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
), a
quadratic function In mathematics, a quadratic function of a single variable (mathematics), variable is a function (mathematics), function of the form :f(x)=ax^2+bx+c,\quad a \ne 0, where is its variable, and , , and are coefficients. The mathematical expression, e ...
cx^2 (c as a nonnegative real number) and an exponential function ce^x (c as a nonnegative real number). Convex functions play an important role in many areas of mathematics. They are especially important in the study of
optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfiel ...
problems where they are distinguished by a number of convenient properties. For instance, a strictly convex function on an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
has no more than one minimum. Even in infinite-dimensional spaces, under suitable additional hypotheses, convex functions continue to satisfy such properties and as a result, they are the most well-understood functionals in the
calculus of variations The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions and functional (mathematics), functionals, to find maxima and minima of f ...
. In
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
, a convex function applied to the
expected value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informa ...
of a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
is always bounded above by the expected value of the convex function of the random variable. This result, known as Jensen's inequality, can be used to deduce inequalities such as the arithmetic–geometric mean inequality and
Hölder's inequality In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality (mathematics), inequality between Lebesgue integration, integrals and an indispensable tool for the study of Lp space, spaces. The numbers an ...
.


Definition

Let X be a convex subset of a real
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
and let f: X \to \R be a function. Then f is called if and only if any of the following equivalent conditions hold:
  1. For all 0 \leq t \leq 1 and all x_1, x_2 \in X: f\left(t x_1 + (1-t) x_2\right) \leq t f\left(x_1\right) + (1-t) f\left(x_2\right) The right hand side represents the straight line between \left(x_1, f\left(x_1\right)\right) and \left(x_2, f\left(x_2\right)\right) in the graph of f as a function of t; increasing t from 0 to 1 or decreasing t from 1 to 0 sweeps this line. Similarly, the argument of the function f in the left hand side represents the straight line between x_1 and x_2 in X or the x-axis of the graph of f. So, this condition requires that the straight line between any pair of points on the curve of f be above or just meeting the graph.
  2. For all 0 < t < 1 and all x_1, x_2 \in X such that x_1\neq x_2: f\left(t x_1 + (1-t) x_2\right) \leq t f\left(x_1\right) + (1-t) f\left(x_2\right) The difference of this second condition with respect to the first condition above is that this condition does not include the intersection points (for example, \left(x_1, f\left(x_1\right)\right) and \left(x_2, f\left(x_2\right)\right)) between the straight line passing through a pair of points on the curve of f (the straight line is represented by the right hand side of this condition) and the curve of f; the first condition includes the intersection points as it becomes f\left(x_1\right) \leq f\left(x_1\right) or f\left(x_2\right) \leq f\left(x_2\right) at t = 0 or 1, or x_1 = x_2. In fact, the intersection points do not need to be considered in a condition of convex using f\left(t x_1 + (1-t) x_2\right) \leq t f\left(x_1\right) + (1-t) f\left(x_2\right) because f\left(x_1\right) \leq f\left(x_1\right) and f\left(x_2\right) \leq f\left(x_2\right) are always true (so not useful to be a part of a condition).
The second statement characterizing convex functions that are valued in the real line \R is also the statement used to define that are valued in the extended real number line \infty, \infty= \R \cup \, where such a function f is allowed to take \pm\infty as a value. The first statement is not used because it permits t to take 0 or 1 as a value, in which case, if f\left(x_1\right) = \pm\infty or f\left(x_2\right) = \pm\infty, respectively, then t f\left(x_1\right) + (1 - t) f\left(x_2\right) would be undefined (because the multiplications 0 \cdot \infty and 0 \cdot (-\infty) are undefined). The sum -\infty + \infty is also undefined so a convex extended real-valued function is typically only allowed to take exactly one of -\infty and +\infty as a value. The second statement can also be modified to get the definition of , where the latter is obtained by replacing \,\leq\, with the strict inequality \,<. Explicitly, the map f is called if and only if for all real 0 < t < 1 and all x_1, x_2 \in X such that x_1 \neq x_2: f\left(t x_1 + (1-t) x_2\right) < t f\left(x_1\right) + (1-t) f\left(x_2\right) A strictly convex function f is a function that the straight line between any pair of points on the curve f is above the curve f except for the intersection points between the straight line and the curve. An example of a function which is convex but not strictly convex is f(x,y) = x^2 + y. This function is not strictly convex because any two points sharing an x coordinate will have a straight line between them, while any two points NOT sharing an x coordinate will have a greater value of the function than the points between them. The function f is said to be (resp. ) if -f (f multiplied by −1) is convex (resp. strictly convex).


Alternative naming

The term ''convex'' is often referred to as ''convex down'' or ''concave upward'', and the term concave is often referred as ''concave down'' or ''convex upward''. If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph \cup. As an example, Jensen's inequality refers to an inequality involving a convex or convex-(down), function.


Properties

Many properties of convex functions have the same simple formulation for functions of many variables as for functions of one variable. See below the properties for the case of many variables, as some of them are not listed for functions of one variable.


Functions of one variable

* Suppose f is a function of one real variable defined on an interval, and let R(x_1, x_2) = \frac (note that R(x_1, x_2) is the slope of the purple line in the first drawing; the function R is symmetric in (x_1, x_2), means that R does not change by exchanging x_1 and x_2). f is convex if and only if R(x_1, x_2) is monotonically non-decreasing in x_1, for every fixed x_2 (or vice versa). This characterization of convexity is quite useful to prove the following results. * A convex function f of one real variable defined on some
open interval In mathematics, a real interval is the set (mathematics), set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without ...
C is continuous on C . Moreover, f admits left and right derivatives, and these are monotonically non-decreasing. In addition, the left derivative is left-continuous and the right-derivative is right-continuous. As a consequence, f is differentiable at all but at most countably many points, the set on which f is not differentiable can however still be dense. If C is closed, then f may fail to be continuous at the endpoints of C (an example is shown in the examples section). * A differentiable function of one variable is convex on an interval if and only if its
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
is monotonically non-decreasing on that interval. If a function is differentiable and convex then it is also continuously differentiable. * A differentiable function of one variable is convex on an interval if and only if its graph lies above all of its tangents: f(x) \geq f(y) + f'(y) (x-y) for all x and y in the interval. * A twice differentiable function of one variable is convex on an interval if and only if its
second derivative In calculus, the second derivative, or the second-order derivative, of a function is the derivative of the derivative of . Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the secon ...
is non-negative there; this gives a practical test for convexity. Visually, a twice differentiable convex function "curves up", without any bends the other way ( inflection points). If its second derivative is positive at all points then the function is strictly convex, but the converse does not hold. For example, the second derivative of f(x) = x^4 is f''(x) = 12x^, which is zero for x = 0, but x^4 is strictly convex. **This property and the above property in terms of "...its derivative is monotonically non-decreasing..." are not equal since if f'' is non-negative on an interval X then f' is monotonically non-decreasing on X while its converse is not true, for example, f' is monotonically non-decreasing on X while its derivative f'' is not defined at some points on X. * If f is a convex function of one real variable, and f(0)\le 0, then f is superadditive on the positive reals, that is f(a + b) \geq f(a) + f(b) for positive real numbers a and b. * A function f is midpoint convex on an interval C if for all x_1, x_2 \in C f\!\left(\frac\right) \leq \frac. This condition is only slightly weaker than convexity. For example, a real-valued Lebesgue measurable function that is midpoint-convex is convex: this is a theorem of Sierpiński. In particular, a continuous function that is midpoint convex will be convex.


Functions of several variables

* A function that is marginally convex in each individual variable is not necessarily (jointly) convex. For example, the function f(x, y) = x y is marginally linear, and thus marginally convex, in each variable, but not (jointly) convex. * A function f : X \to \infty, \infty/math> valued in the extended real numbers \infty, \infty= \R \cup \ is convex if and only if its epigraph \ is a convex set. * A differentiable function f defined on a convex domain is convex if and only if f(x) \geq f(y) + \nabla f(y)^T \cdot (x-y) holds for all x, y in the domain. * A twice differentiable function of several variables is convex on a convex set if and only if its Hessian matrix of second
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...
s is positive semidefinite on the interior of the convex set. * For a convex function f, the sublevel sets \ and \ with a \in \R are convex sets. A function that satisfies this property is called a and may fail to be a convex function. * Consequently, the set of global minimisers of a convex function f is a convex set: \,f - convex. * Any local minimum of a convex function is also a global minimum. A convex function will have at most one global minimum. * Jensen's inequality applies to every convex function f. If X is a random variable taking values in the domain of f, then \operatorname(f(X)) \geq f(\operatorname(X)), where \operatorname denotes the mathematical expectation. Indeed, convex functions are exactly those that satisfies the hypothesis of Jensen's inequality. * A first-order
homogeneous function In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar (mathematics), scalar, then the function's value is multiplied by some p ...
of two positive variables x and y, (that is, a function satisfying f(a x, a y) = a f(x, y) for all positive real a, x, y > 0) that is convex in one variable must be convex in the other variable.


Operations that preserve convexity

* -f is concave if and only if f is convex. * If r is any real number then r + f is convex if and only if f is convex. * Nonnegative weighted sums: **if w_1, \ldots, w_n \geq 0 and f_1, \ldots, f_n are all convex, then so is w_1 f_1 + \cdots + w_n f_n. In particular, the sum of two convex functions is convex. **this property extends to infinite sums, integrals and expected values as well (provided that they exist). * Elementwise maximum: let \_ be a collection of convex functions. Then g(x) = \sup\nolimits_ f_i(x) is convex. The domain of g(x) is the collection of points where the expression is finite. Important special cases: **If f_1, \ldots, f_n are convex functions then so is g(x) = \max \left\. ** Danskin's theorem: If f(x,y) is convex in x then g(x) = \sup\nolimits_ f(x,y) is convex in x even if C is not a convex set. * Composition: **If f and g are convex functions and g is non-decreasing over a univariate domain, then h(x) = g(f(x)) is convex. For example, if f is convex, then so is e^ because e^x is convex and monotonically increasing. **If f is concave and g is convex and non-increasing over a univariate domain, then h(x) = g(f(x)) is convex. **Convexity is invariant under affine maps: that is, if f is convex with domain D_f \subseteq \mathbf^m, then so is g(x) = f(Ax+b), where A \in \mathbf^, b \in \mathbf^m with domain D_g \subseteq \mathbf^n. * Minimization: If f(x,y) is convex in (x,y) then g(x) = \inf\nolimits_ f(x,y) is convex in x, provided that C is a convex set and that g(x) \neq -\infty. * If f is convex, then its perspective g(x, t) = t f \left(\tfrac \right) with domain \left\ is convex. * Let X be a vector space. f : X \to \mathbf is convex and satisfies f(0) \leq 0 if and only if f(ax+by) \leq a f(x) + bf(y) for any x, y \in X and any non-negative real numbers a, b that satisfy a + b \leq 1.


Strongly convex functions

The concept of strong convexity extends and parametrizes the notion of strict convexity. Intuitively, a strongly-convex function is a function that grows as fast as a quadratic function. A strongly convex function is also strictly convex, but not vice versa. If a one-dimensional function f is twice continuously differentiable and the domain is the real line, then we can characterize it as follows: *f convex if and only if f''(x) \ge 0 for all x. *f strictly convex if f''(x) > 0 for all x (note: this is sufficient, but not necessary). *f strongly convex if and only if f''(x) \ge m > 0 for all x. For example, let f be strictly convex, and suppose there is a sequence of points (x_n) such that f''(x_n) = \tfrac. Even though f''(x_n) > 0, the function is not strongly convex because f''(x) will become arbitrarily small. More generally, a differentiable function f is called strongly convex with parameter m > 0 if the following inequality holds for all points x, y in its domain:(\nabla f(x) - \nabla f(y) )^T (x-y) \ge m \, x-y\, _2^2 or, more generally, \langle \nabla f(x) - \nabla f(y), x-y \rangle \ge m \, x-y\, ^2 where \langle \cdot, \cdot\rangle is any
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
, and \, \cdot\, is the corresponding norm. Some authors, such as refer to functions satisfying this inequality as elliptic functions. An equivalent condition is the following: f(y) \ge f(x) + \nabla f(x)^T (y-x) + \frac \, y-x\, _2^2 It is not necessary for a function to be differentiable in order to be strongly convex. A third definition for a strongly convex function, with parameter m, is that, for all x, y in the domain and t \in ,1 f(tx+(1-t)y) \le t f(x)+(1-t)f(y) - \frac m t(1-t) \, x-y\, _2^2 Notice that this definition approaches the definition for strict convexity as m \to 0, and is identical to the definition of a convex function when m = 0. Despite this, functions exist that are strictly convex but are not strongly convex for any m > 0 (see example below). If the function f is twice continuously differentiable, then it is strongly convex with parameter m if and only if \nabla^2 f(x) \succeq mI for all x in the domain, where I is the identity and \nabla^2f is the Hessian matrix, and the inequality \succeq means that \nabla^2 f(x) - mI is positive semi-definite. This is equivalent to requiring that the minimum eigenvalue of \nabla^2 f(x) be at least m for all x. If the domain is just the real line, then \nabla^2 f(x) is just the second derivative f''(x), so the condition becomes f''(x) \ge m. If m = 0 then this means the Hessian is positive semidefinite (or if the domain is the real line, it means that f''(x) \ge 0), which implies the function is convex, and perhaps strictly convex, but not strongly convex. Assuming still that the function is twice continuously differentiable, one can show that the lower bound of \nabla^2 f(x) implies that it is strongly convex. Using Taylor's Theorem there exists z \in \ such that f(y) = f(x) + \nabla f(x)^T (y-x) + \frac (y-x)^T \nabla^2f(z) (y-x) Then (y-x)^T \nabla^2f(z) (y-x) \ge m (y-x)^T(y-x) by the assumption about the eigenvalues, and hence we recover the second strong convexity equation above. A function f is strongly convex with parameter ''m'' if and only if the function x\mapsto f(x) -\frac m 2 \, x\, ^2 is convex. A twice continuously differentiable function f on a compact domain X that satisfies f''(x)>0 for all x\in X is strongly convex. The proof of this statement follows from the extreme value theorem, which states that a continuous function on a compact set has a maximum and minimum. Strongly convex functions are in general easier to work with than convex or strictly convex functions, since they are a smaller class. Like strictly convex functions, strongly convex functions have unique minima on compact sets.


Properties of strongly-convex functions

If ''f'' is a strongly-convex function with parameter ''m'', then: * For every real number ''r'', the level set is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
. * The function ''f'' has a unique global minimum on ''Rn''.


Uniformly convex functions

A uniformly convex function, with modulus \phi, is a function f that, for all x, y in the domain and t \in , 1 satisfies f(tx+(1-t)y) \le t f(x)+(1-t)f(y) - t(1-t) \phi(\, x-y\, ) where \phi is a function that is non-negative and vanishes only at 0. This is a generalization of the concept of strongly convex function; by taking \phi(\alpha) = \tfrac \alpha^2 we recover the definition of strong convexity. It is worth noting that some authors require the modulus \phi to be an increasing function, but this condition is not required by all authors.


Examples


Functions of one variable

* The function f(x)=x^2 has f''(x)=2>0, so is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. * The function f(x)=x^4 has f''(x)=12x^2\ge 0, so is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points. It is not strongly convex. * The
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
function f(x)=, x, is convex (as reflected in the
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of Degeneracy (mathematics)#T ...
), even though it does not have a derivative at the point x = 0. It is not strictly convex. * The function f(x)=, x, ^p for p \ge 1 is convex. * The exponential function f(x)=e^x is convex. It is also strictly convex, since f''(x)=e^x >0 , but it is not strongly convex since the second derivative can be arbitrarily close to zero. More generally, the function g(x) = e^ is logarithmically convex if f is a convex function. The term "superconvex" is sometimes used instead. * The function f with domain ,1defined by f(0) = f(1) = 1, f(x) = 0 for 0 < x < 1 is convex; it is continuous on the open interval (0, 1), but not continuous at 0 and 1. * The function x^3 has second derivative 6 x; thus it is convex on the set where x \geq 0 and concave on the set where x \leq 0. * Examples of functions that are monotonically increasing but not convex include f(x)=\sqrt and g(x)=\log x. * Examples of functions that are convex but not monotonically increasing include h(x)= x^2 and k(x)=-x. * The function f(x) = \tfrac has f''(x)=\tfrac which is greater than 0 if x > 0 so f(x) is convex on the interval (0, \infty). It is concave on the interval (-\infty, 0). * The function f(x)=\tfrac with f(0)=\infty, is convex on the interval (0, \infty) and convex on the interval (-\infty, 0), but not convex on the interval (-\infty, \infty), because of the singularity at x = 0.


Functions of ''n'' variables

* LogSumExp function, also called softmax function, is a convex function. *The function -\log\det(X) on the domain of positive-definite matrices is convex. * Every real-valued linear transformation is convex but not strictly convex, since if f is linear, then f(a + b) = f(a) + f(b). This statement also holds if we replace "convex" by "concave". * Every real-valued
affine function In Euclidean geometry, an affine transformation or affinity (from the Latin, ''wikt:affine, affinis'', "connected with") is a geometric transformation that preserves line (geometry), lines and parallel (geometry), parallelism, but not necessarily ...
, that is, each function of the form f(x) = a^T x + b, is simultaneously convex and concave. * Every norm is a convex function, by the
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of Degeneracy (mathematics)#T ...
and positive homogeneity. * The
spectral radius ''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried (screenwriter), Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Ma ...
of a nonnegative matrix is a convex function of its diagonal elements.Cohen, J.E., 1981
Convexity of the dominant eigenvalue of an essentially nonnegative matrix
Proceedings of the American Mathematical Society, 81(4), pp.657-658.


See also

* Concave function *
Convex analysis Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex optimization, convex minimization, a subdomain of optimization (mathematics), optimization theor ...
* Convex conjugate * Convex curve *
Convex optimization Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems ...
* Geodesic convexity *
Hahn–Banach theorem In functional analysis, the Hahn–Banach theorem is a central result that allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space. The theorem also shows that there are sufficient ...
* Hermite–Hadamard inequality * Invex function * Jensen's inequality * K-convex function * Kachurovskii's theorem, which relates convexity to monotonicity of the derivative * Karamata's inequality * Logarithmically convex function * Pseudoconvex function * Quasiconvex function * Subderivative of a convex function


Notes


References

* * Borwein, Jonathan, and Lewis, Adrian. (2000). Convex Analysis and Nonlinear Optimization. Springer. * * Hiriart-Urruty, Jean-Baptiste, and Lemaréchal, Claude. (2004). Fundamentals of Convex analysis. Berlin: Springer. * * * * * * *


External links

* * {{Authority control Convex analysis Generalized convexity Types of functions