MicroDNA
MicroDNA is the most abundant subtype of Extrachromosomal Circular DNA (eccDNA) in humans, typically ranging from 200-400 base pairs in length and enriched in non-repetitive genomic sequences with a high density of exons. Additionally, microDNA has been found to come from regions with CpG-islands which are commonly found within the 5' and 3' UTRs. Being produced from regions of active transcription, it is hypothesized that microDNA may be formed as a by-product of transcriptional DNA damage repair. MicroDNA is also thought to arise from other DNA repair pathways, mainly due to the parental sequences of microDNA having 2- to 15 bp direct repeats at the ends, resulting in replication slippage repair. While only recently discovered, the role microDNA plays in and out of the cell is still not completely understood. However, microDNA is currently thought to affect cellular homeostasis through transcription factor binding and have been used as a cancer biomarker. Discovery MicroDNA w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double Minute
Double minutes (DMs) are small fragments of extrachromosomal DNA, which have been observed in a large number of human tumors including breast, lung, ovary, colon, and most notably, neuroblastoma. They are a manifestation of gene amplification as a result of chromothripsis, during the development of tumors, which give the cells selective advantages for growth and survival. This selective advantage is as a result of double minutes frequently harboring amplified oncogenes and genes involved in drug resistance. DMs, like actual chromosomes, are composed of chromatin and replicate in the nucleus of the cell during cell division. Unlike typical chromosomes, they are composed of circular fragments of DNA, up to only a few million base pairs in size, and contain no centromere or telomere. Further to this, they often lack key regulatory elements, allowing genes to be constitutively expressed. The term ecDNA may be used to refer to DMs in a more general manner. The term Double Minute or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extrachromosomal Circular DNA
Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA structure that was first discovered in 1964 by Alix Bassel and Yasuo Hotta. In contrast to previously identified circular DNA structures (e.g., bacterial plasmids, mitochondrial DNA, circular bacterial chromosomes, or chloroplast DNA), eccDNA are circular DNA found in the eukaryotic nuclei of plant and animal (including human) cells. Extrachromosomal circular DNA is derived from chromosomal DNA, can range in size from 50 base pairs to several mega-base pairs in length, and can encode regulatory elements and full-length genes. eccDNA has been observed in various eukaryotic species and it is proposed to be a byproduct of programmed DNA recombination events, such as V(D)J recombination. Historical Background In 1964, Bassel and Hotta published their initial discovery of eccDNA that they made while researching Franklin Stahl’s chromosomal theory. In their experiments, they visualized isolated wheat n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Selfish Genetic Elements
Selfish genetic elements (historically also referred to as selfish genes, ultra-selfish genes, selfish DNA, parasitic DNA and genomic outlaws) are genetic segments that can enhance their own transmission at the expense of other genes in the genome, even if this has no positive or a net negative effect on organismal fitness. Genomes have traditionally been viewed as cohesive units, with genes acting together to improve the fitness of the organism. Early observations of selfish genetic elements were made almost a century ago, but the topic did not get widespread attention until several decades later. Inspired by the gene-centred views of evolution popularized by George Williams and Richard Dawkins, two papers were published back-to-back in ''Nature'' in 1980 – by Leslie Orgel and Francis Crick and by Ford Doolittle and Carmen Sapienza – introducing the concept of selfish genetic elements (at the time called "selfish DNA") to the wider scientific community. Both papers emphasiz ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extrachromosomal RDNA Circle
Extrachromosomal rDNA circles (aka ERC) are pieces of extrachromosomal circular DNA (eccDNA) derived from ribosomal DNA (rDNA). Initially found in baker's yeast, these self-replicating circles are suggested to contribute to their aging and found in their aged cells. Like ordinary eccDNA, they are created by intra-molecular homologous recombination of the chromosome. The process for intra-molecular homologous recombination is independent of chromosomal replication. The de novo generated circles had exact multiples of tandem copies of 2-kb fragments from cosmid templates. The tandem organization is essential to circle formation. Looping out of organized ribosomal genes in intergenic nontranscribed spacers yielded either large or small repeat circles dependent on large or short repeats of the spacer. In yeast strains The Sgs1 gene mutations in yeast mother cells were shown to have accelerated aging, suggesting their function to cellular senescence. ERCs accumulate in old cells a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extrachromosomal DNA
Extrachromosomal DNA (abbreviated ecDNA) is any DNA that is found off the chromosomes, either inside or outside the nucleus of a cell. Most DNA in an individual genome is found in chromosomes contained in the nucleus. Multiple forms of extrachromosomal DNA exist, and, while some of these serve important biological functions, they can also play a role in diseases such as cancer. In prokaryotes, nonviral extrachromosomal DNA is primarily found in plasmids, whereas, in eukaryotes extrachromosomal DNA is primarily found in organelles. Mitochondrial DNA is a main source of this extrachromosomal DNA in eukaryotes. The fact that this organelle contains its own DNA supports the hypothesis that mitochondria originated as bacterial cells engulfed by ancestral eukaryotic cells. Extrachromosomal DNA is often used in research into replication because it is easy to identify and isolate. Although extrachromosomal circular DNA (eccDNA) is found in normal eukaryotic cells, extrachromosomal DNA ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exonuclease
Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3′ or the 5′ end occurs. Its close relative is the endonuclease, which cleaves phosphodiester bonds in the middle (endo) of a polynucleotide chain. Eukaryotes and prokaryotes have three types of exonucleases involved in the normal turnover of mRNA: 5′ to 3′ exonuclease (Xrn1), which is a dependent decapping protein; 3′ to 5′ exonuclease, an independent protein; and poly(A)-specific 3′ to 5′ exonuclease. In both archaea and eukaryotes, one of the main routes of RNA degradation is performed by the multi-protein exosome complex, which consists largely of 3′ to 5′ exoribonucleases. Significance to polymerase RNA polymerase II is known to be in effect during transcriptional termination; it works with a 5' exonuclease (human gene Xrn2) to degrade the newly formed transcr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ribonuclease
Ribonuclease (commonly abbreviated RNase) is a type of nuclease that catalyzes the degradation of RNA into smaller components. Ribonucleases can be divided into endoribonucleases and exoribonucleases, and comprise several sub-classes within the EC 2.7 (for the phosphorolytic enzymes) and 3.1 (for the hydrolytic enzymes) classes of enzymes. Function All organisms studied contain many RNases of two different classes, showing that RNA degradation is a very ancient and important process. As well as clearing of cellular RNA that is no longer required, RNases play key roles in the maturation of all RNA molecules, both messenger RNAs that carry genetic material for making proteins and non-coding RNAs that function in varied cellular processes. In addition, active RNA degradation systems are the first defense against RNA viruses and provide the underlying machinery for more advanced cellular immune strategies such as RNAi. Some cells also secrete copious quantities of non-specific ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Biomarker
In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. as cited in Biomarkers are used in many scientific fields. Medicine Biomarkers used in the medical field, are a part of a relatively new clinical toolset categorized by their clinical applications. The four main classes are molecular, physiologic, histologic and radiographic biomarkers. All four types of biomarkers have a clinical role in narrowing or guiding treatment decisions and follow a sub-categorization of being either predictive, prognostic, or diagnostic. Predictive Predictive molecular, cellular, or imaging biomarkers that pass validation can serve as a method of predicting clinical outcomes. Predictive biomarkers are used to help optimize ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transposase
A transposase is any of a class of enzymes capable of binding to the end of a transposon and catalysing its movement to another part of a genome, typically by a cut-and-paste mechanism or a replicative mechanism, in a process known as transposition. The word "transposase" was first coined by the individuals who cloned the enzyme required for transposition of the Tn3 transposon. The existence of transposons was postulated in the late 1940s by Barbara McClintock, who was studying the inheritance of maize, but the actual molecular basis for transposition was described by later groups. McClintock discovered that some segments of chromosomes changed their position, jumping between different loci or from one chromosome to another. The repositioning of these transposons (which coded for color) allowed other genes for pigment to be expressed. Transposition in maize causes changes in color; however, in other organisms, such as bacteria, it can cause antibiotic resistance. Transposition is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
LINE1
LINE1 (an abbreviation of Long interspersed nuclear element-1, also known as L1 and LINE-1) is a family of related class I transposable elements in the DNA of many groups of eukaryotes, including animals and plants, classified with the long interspersed nuclear elements (LINEs). L1 transposons are most ubiquitous in mammals, where they make up a significant fraction of the total genome length, for example they comprise approximately 17% of the human genome. These active L1s can interrupt the genome through insertions, deletions, rearrangements, and copy number variations. L1 activity has contributed to the instability and evolution of genomes and is tightly regulated in the germline by DNA methylation, histone modifications, and piRNA. L1s can further impact genome variation through mispairing and unequal crossing over during meiosis due to its repetitive DNA sequences. L1 gene products are also required by many non-autonomous Alu and SVA SINE retrotransposons. Mutations induc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CpG Vs C-G Bp
CpG may refer to: * CpG site The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG isl ... - methylated sequences of DNA significant in gene regulation * CpG island - regions of DNA that contain several CpG sites * CpG oligodeoxynucleotide - unmethylated sequences of DNA that have immunostimulatory properties {{disambig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
DT40 MicroDNA
The Type DT4 is a four-car electric multiple unit (EMU) train type operated by the Hamburger Hochbahn AG on the Hamburg U-Bahn system since 1988. Formation Every DT4 train consists of four cars, which are formed as two Articulated car, articulated half-sets with two cars each. The cars don't have Gangway_connection#Open_gangways_in_urban_transit, gangways, but feature windows in the inner car ends. Interior The interior consists of transverse seating bays. Widescreen passenger information displays are to be fitted to the whole DT4 fleet, with works scheduled to be completed in 2022. File:Hamburg U-Bahn innen.3.jpg, Interior view DT4.1 and DT4.2 File:HHA DT4 Innenansicht.jpg, Interior view DT4.3 and DT4.4 File:HHA DT4 Innenansicht-new.jpg, Interior with passenger information display in September 2008 File:Hamburg U-Bahnzug innen4.JPG, Interior of a refurbished train in August 2015 Technical specifications The trains have steel car bodies and a three-phase propulsion system. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |