Flexible Polyhedron
In geometry, a flexible polyhedron is a polyhedral surface without any boundary edges, whose shape can be continuously changed while keeping the shapes of all of its faces unchanged. The Cauchy's theorem (geometry), Cauchy rigidity theorem shows that in dimension 3 such a polyhedron cannot be convex set, convex (this is also true in higher dimensions). Examples The first examples of flexible polyhedra, now called Bricard octahedron, Bricard octahedra, were discovered by . They are self-intersecting surfaces isometry, isometric to an octahedron. The first example of a flexible non-self-intersecting surface in \mathbb^3, the Connelly sphere, was discovered by . Steffen's polyhedron is another non-self-intersecting flexible polyhedron derived from Bricard's octahedra. Bellows conjecture In the late 1970s Connelly and D. Sullivan formulated the bellows conjecture stating that the volume of a flexible polyhedron is invariant (mathematics), invariant under flexing. This c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dehn Invariant
In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled (" dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that certain polyhedra with equal volume cannot be dissected into each other. Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal. Having Dehn invariant zero is a necessary (but not sufficient) condition for being a space-filling polyhedron, and a polyhedron can be cut up and reassembled into a space-filling polyhedron if and only if its Dehn invariant is zero. The Dehn invariant of a self-intersection-free flexible polyhedron is invariant as it flexes. Dehn invariants are also an invariant for dissection in higher dimensions, and (with volume) a complete invariant in four dimensions. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
David A
David (; , "beloved one") was a king of ancient Israel and Judah and the third king of the United Monarchy, according to the Hebrew Bible and Old Testament. The Tel Dan stele, an Aramaic-inscribed stone erected by a king of Aram-Damascus in the late 9th/early 8th centuries BCE to commemorate a victory over two enemy kings, contains the phrase (), which is translated as " House of David" by most scholars. The Mesha Stele, erected by King Mesha of Moab in the 9th century BCE, may also refer to the "House of David", although this is disputed. According to Jewish works such as the '' Seder Olam Rabbah'', '' Seder Olam Zutta'', and '' Sefer ha-Qabbalah'' (all written over a thousand years later), David ascended the throne as the king of Judah in 885 BCE. Apart from this, all that is known of David comes from biblical literature, the historicity of which has been extensively challenged,Writing and Rewriting the Story of Solomon in Ancient Israel; by Isaac Kalimi; page 3 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics Magazine
''Mathematics Magazine'' is a refereed bimonthly publication of the Mathematical Association of America. Its intended audience is teachers of collegiate mathematics, especially at the junior/senior level, and their students. It is explicitly a journal of mathematics rather than pedagogy. Rather than articles in the terse "theorem-proof" style of research journals, it seeks articles which provide a context for the mathematics they deliver, with examples, applications, illustrations, and historical background. Paid circulation in 2008 was 9,500 and total circulation was 10,000. ''Mathematics Magazine'' is a continuation of ''Mathematics News Letter'' (1926–1934) and ''National Mathematics Magazine'' (1934–1945). Doris Schattschneider became the first female editor of ''Mathematics Magazine'' in 1981. .. The MAA gives the Carl B. Allendoerfer Awards annually "for articles of expository excellence" published in ''Mathematics Magazine''. See also *''American Mathematical Mon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Publications Mathématiques De L'IHÉS
''Publications Mathématiques de l'IHÉS'' is a peer-reviewed mathematical journal. It is published by Springer Science+Business Media on behalf of the Institut des Hautes Études Scientifiques, with the help of the Centre National de la Recherche Scientifique. The journal was established in 1959 and was published at irregular intervals, from one to five volumes a year. It is now biannual. The editor-in-chief is Sébastien Boucksom (CNRS, Institut de Mathématique de Jussieu). See also *''Annals of Mathematics The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as t ...'' *'' Journal of the American Mathematical Society'' *'' Inventiones Mathematicae'' External links * Back issues from 1959 to 2010 Mathematics journals Academic journals established in 1959 Springer Science+Business Me ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rigid Origami
Rigid origami is a branch of origami which is concerned with folding structures using flat rigid sheets joined by hinges. That is, unlike in traditional origami, the panels of the paper cannot be bent during the folding process; they must remain flat at all times, and the paper only folded along its hinges. A rigid origami model would still be foldable if it was made from glass sheets with hinges in place of its crease lines. However, there is no requirement that the structure start as a single flat sheet – for instance shopping bags with flat bottoms are studied as part of rigid origami. Rigid origami is a part of the study of the mathematics of paper folding, and rigid origami structures can be considered as a type of mechanical linkage. Rigid origami has great practical utility. Mathematics The number of standard origami bases that can be folded using rigid origami is restricted by its rules. Rigid origami does not have to follow the Huzita–Hatori axioms, the fold l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kokotsakis Polyhedron
Kokotsakis polyhedron is a polyhedral surface in three-dimensional space consisting of any number sided of a polygon as its base, and quadrilaterals are its lateral faces with triangles between the consecutive quadrilateral; for n -sided polygonal base of a polyhedron, there are n quadrilaterals and n triangles. Properties and history The polyhedron was discovered when studied the meshes wherein the perimeter of a polygon is surrounded by other polygons, showing an infinitesimally flexible in the case of a quadrilateral base, which was later known as Kokotsakis mesh. More examples of this special case of a Kokotsakis polyhedron were discovered by other mathematicians. Here, a polyhedron is flexible if the shape can be continuously changed while preserving the faces unchanged. Each of its vertexes is said to be "developable", meaning the sum of its plane angle is 2 \pi , resulting in the polyhedral surface being an origami crease pattern, which satisfies the Kawasaki's the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kaleidocycle
A kaleidocycle or flextangle is a flexible polyhedron connecting six tetrahedra (or tetragonal disphenoid, disphenoids) on opposite edges into a cycle. If the faces of the disphenoids are equilateral triangles, it can be constructed from a stretched triangular tiling net with four triangles in one direction and an even number in the other direction. The kaleidocycle has degenerate pairs of coinciding edges in transition, which function as hinges. The kaleidocycle has an additional property that it can be continuously twisted around a ring axis, showing 4 sets of 6 triangular faces. The kaleidocycle is invariant under twists about its ring axis by k\pi/2, where k is an integer, and can therefore be continuously twisted. Kaleidocycles can be constructed from a single piece of paper (with dimensions l \times 2l) without tearing or using adhesive. Because of this and their continuous twisting property, they are often given as examples of simple origami toys. The kaleidocycle is someti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flexagon
In geometry, flexagons are Plane (geometry), flat models, usually constructed by folding strips of paper, that can be ''flexed'' or folded in certain ways to reveal faces besides the two that were originally on the back and front. Flexagons are usually square or rectangular (tetraflexagons) or hexagon, hexagonal (hexaflexagons). A prefix can be added to the name to indicate the number of faces that the model can display, including the two faces (back and front) that are visible before flexing. For example, a hexaflexagon with a total of six faces is called a hexahexaflexagon. In hexaflexagon theory (that is, concerning flexagons with six sides), flexagons are usually defined in terms of ''pats''. Two flexagons are equivalent if one can be transformed to the other by a series of pinches and rotations. Flexagon equivalence is an equivalence relation. History Discovery and introduction of the hexaflexagon The discovery of the first flexagon, a trihexaflexagon, is credited to t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane (mathematics), plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudosphere, pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they local property, locally resemble the hyperbolic plane. The hyperboloid model of hyperbolic geometry provides a representation of event (relativity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
4-polytope
In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: Vertex (geometry), vertices, Edge (geometry), edges, Face (geometry), faces (polygons), and Cell (mathematics), cells (Polyhedron, polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853. The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron. Topologically 4-polytopes are closely related to the Convex uniform honeycomb, uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space; similarly the 3D cube is related to the infinite 2D square tiling. Convex 4-polytopes can be ''cut and unfolded'' as polyhedral net, nets in 3-space. Definition A 4-polytope is a closed Four-dimensional space, four-dimensional figure. It compr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |