Rigid origami is a branch of
origami which is concerned with folding structures using flat rigid sheets joined by
hinge
A hinge is a mechanical bearing that connects two solid objects, typically allowing only a limited angle of rotation between them. Two objects connected by an ideal hinge rotate relative to each other about a fixed axis of rotation, with all ...
s. That is, unlike in traditional origami, the panels of the paper cannot be bent during the folding process; they must remain flat at all times, and the paper only folded along its hinges. A rigid origami model would still be foldable if it was made from glass sheets with hinges in place of its crease lines.
However, there is no requirement that the structure start as a single flat sheet – for instance
shopping bag
Shopping bags are medium-sized bags, typically around 10–20 litres (2.5–5 gallons) in volume (though much larger versions exist, especially for non-grocery shopping), that are used by shoppers to carry home their purchases. Some are intende ...
s with flat bottoms are studied as part of rigid origami.
Rigid origami is a part of the study of the
mathematics of paper folding, and rigid origami structures can be considered as a type of
mechanical linkage. Rigid origami has great practical utility.
Mathematics
The number of standard
origami bases that can be folded using rigid origami is restricted by its rules.
Rigid origami does not have to follow the
Huzita–Hatori axioms, the fold lines can be calculated rather than having to be constructed from existing lines and points. When folding rigid origami flat,
Kawasaki's theorem and
Maekawa's theorem restrict the folding patterns that are possible, just as they do in conventional origami, but they no longer form an exact characterization: some patterns that can be folded flat in conventional origami cannot be folded flat rigidly.
The
Bellows theorem says that a
flexible polyhedron has constant volume when flexed rigidly.
The
napkin folding problem asks whether it is possible to fold a square so the perimeter of the resulting flat figure is increased. That this can be solved within rigid origami was proved by A.S. Tarasov in 2004.
Blooming is a rigid origami motion of a
net of a polyhedron from its flat unfolded state to the folded polyhedron, or vice versa. Although every
convex polyhedron
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary su ...
has a net with a blooming, it is not known whether there exists a blooming that does not cut across faces of the polyhedron, or whether all nets of convex polyhedra have bloomings.
Complexity theory
Determining whether all creases of a
crease pattern can be folded simultaneously as a piece of rigid origami, or whether a subset of the creases can be folded, are both
NP-hard
In computational complexity theory, a computational problem ''H'' is called NP-hard if, for every problem ''L'' which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from ''L'' to ''H''. That is, assumi ...
. This is true even for determining the existence of a folding motion that keeps the paper arbitrarily close to its flat state, so (unlike for other results in the hardness of folding origami crease patterns) this result does not rely on the impossibility of self-intersections of the folded paper.
Applications

The
Miura fold is a rigid fold that has been used to pack large
solar panel
A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that produce excited electrons when exposed to light. These electrons flow through a circuit and produce direct ...
arrays for space satellites, which have to be folded before deployment.
Robert J. Lang has applied rigid origami to the problem of folding a space telescope.
Although paper
shopping bag
Shopping bags are medium-sized bags, typically around 10–20 litres (2.5–5 gallons) in volume (though much larger versions exist, especially for non-grocery shopping), that are used by shoppers to carry home their purchases. Some are intende ...
s are commonly folded flat and then unfolded open, the standard folding pattern for doing so is not rigid; the sides of the bag bend slightly when it is folded and unfolded. The tension in the paper from this bending causes it to snap into its two flat states, the flat-folded and opened bag.
Recreational uses
Martin Gardner
Martin Gardner (October 21, 1914May 22, 2010) was an American popular mathematics and popular science writer with interests also encompassing magic, scientific skepticism, micromagic, philosophy, religion, and literatureespecially the writin ...
has popularised
flexagons which are a form of rigid origami and the flexatube.
Kaleidocycles are toys, usually made of paper, which give an effect similar to a kaleidoscope when convoluted.
References
External links
*
{{Mathematics of paper folding
Linkages (mechanical)
Origami