HOME



picture info

Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane (mathematics), plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudosphere, pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they local property, locally resemble the hyperbolic plane. The hyperboloid model of hyperbolic geometry provides a representation of event (relativity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hyperbolic
Hyperbolic may refer to: * of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics ** Hyperbolic geometry, a non-Euclidean geometry ** Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola * of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure of speech * ''Hyperbolic'' (album), by Pnau, 2024 See also * Exaggeration Exaggeration is the representation of something as more extreme or dramatic than it is, intentionally or unintentionally. It can be a rhetorical device or figure of speech, used to evoke strong feelings or to create a strong impression. Ampl ... * Hyperboloid {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperboloid Model
In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of ''n''-dimensional hyperbolic geometry in which points are represented by points on the forward sheet ''S''+ of a two-sheeted hyperboloid in (''n''+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and ''m''-planes are represented by the intersections of (''m''+1)-planes passing through the origin in Minkowski space with ''S''+ or by wedge products of ''m'' vectors. Hyperbolic space is embedded isometrically in Minkowski space; that is, the hyperbolic distance function is inherited from Minkowski space, analogous to the way spherical distance is inherited from Euclidean distance when the ''n''-sphere is embedded in (''n''+1)-dimensional Euclidean space. Other models of hyperbolic space can be thought of as map projections of ''S''+: the Beltrami–Klein model is the projection of ''S''+ through the origin onto a plane perpe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absolute Scale
There is no single definition of an absolute scale. In statistics and measurement theory, it is simply a ratio scale in which the unit of measurement is fixed, and values are obtained by counting. Another definition tells us it is the count of the elements in a set, with its natural origin being zero, the empty set. Some sources tell us that even time can be measured in an absolute scale, proving year zero is measured from the beginning of the universe. Colloquially, the Kelvin temperature scale, where absolute zero is the temperature at which molecular energy is at a minimum, and the Rankine temperature scale are also referred to as absolute scales. In that case, an absolute scale is a system of measurement that begins at a minimum, or zero point, and progresses in only one direction. Measurement theory, however, categorizes them as ratio scales. In general, an absolute scale differs from a relative scale in having some reference point that is not arbitrarily selected. Features A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angle Of Parallelism
In hyperbolic geometry, angle of parallelism \Pi(a) is the angle at the non-right angle vertex of a right hyperbolic triangle having two limiting parallel, asymptotic parallel sides. The angle depends on the segment length ''a'' between the right angle and the vertex of the angle of parallelism. Given a point not on a line, drop a perpendicular to the line from the point. Let ''a'' be the length of this perpendicular segment, and \Pi(a) be the least angle such that the line drawn through the point does not intersect the given line. Since two sides are asymptotically parallel, : \lim_ \Pi(a) = \tfrac\pi\quad\text\quad\lim_ \Pi(a) = 0. There are five equivalent expressions that relate '' \Pi(a)'' and ''a'': : \sin\Pi(a) = \operatorname a = \frac =\frac \ , : \cos\Pi(a) = \tanh a = \frac \ , : \tan\Pi(a) = \operatorname a = \frac = \frac \ , : \tan \left( \tfrac\Pi(a) \right) = e^, : \Pi(a) = \tfrac\pi - \operatorname(a), where sinh, cosh, tanh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclid's Elements
The ''Elements'' ( ) is a mathematics, mathematical treatise written 300 BC by the Ancient Greek mathematics, Ancient Greek mathematician Euclid. ''Elements'' is the oldest extant large-scale deductive treatment of mathematics. Drawing on the works of earlier mathematicians such as Hippocrates of Chios, Eudoxus of Cnidus and Theaetetus (mathematician), Theaetetus, the ''Elements'' is a collection in 13 books of definitions, postulates, propositions and mathematical proofs that covers plane and solid Euclidean geometry, elementary number theory, and Commensurability (mathematics), incommensurable lines. These include Pythagorean theorem, Thales' theorem, the Euclidean algorithm for greatest common divisors, Euclid's theorem that there are infinitely many prime numbers, and the Compass-and-straightedge construction, construction of regular polygons and Regular polyhedra, polyhedra. Often referred to as the most successful textbook ever written, the ''Elements'' has continued to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Absolute Geometry
Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates. The term was introduced by János Bolyai in 1832. It is sometimes referred to as neutral geometry, as it is neutral with respect to the parallel postulate. The first four of Euclid's postulates are now considered insufficient as a basis of Euclidean geometry, so other systems (such as Hilbert's axioms without the parallel axiom) are used instead. Properties In Euclid's ''Elements'', the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry. One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in a triang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. In modern logic, an axiom is a premise or starting point for reasoning. In mathematics, an ''axiom'' may be a " logical axiom" or a " non-logical axiom". Logical axioms are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (''A'' and ''B'') implies ''A''), while non-logical axioms are substantive assertions about the elements of the domain of a specific mathematical theory, for example ''a'' + 0 = ''a'' in integer arithmetic. N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Post-Soviet States
The post-Soviet states, also referred to as the former Soviet Union or the former Soviet republics, are the independent sovereign states that emerged/re-emerged from the dissolution of the Soviet Union in 1991. Prior to their independence, they existed as Republics of the Soviet Union, Union Republics, which were the top-level constituents of the Soviet Union. There are 15 post-Soviet states in total: Armenia, Azerbaijan, Belarus, Estonia, Georgia (country), Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan. Each of these countries succeeded their respective Union Republics: the Armenian Soviet Socialist Republic, Armenian SSR, the Azerbaijan Soviet Socialist Republic, Azerbaijan SSR, the Byelorussian Soviet Socialist Republic, Byelorussian SSR, the Estonian Soviet Socialist Republic, Estonian SSR, the Georgian Soviet Socialist Republic, Georgian SSR, the Kazakh Soviet Socialist Republic, Kazakh SSR, the Kirghiz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spherical Geometry
300px, A sphere with a spherical triangle on it. Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres. Long studied for its practical applications to astronomy, navigation, and geodesy, spherical geometry and the metrical tools of spherical trigonometry are in many respects analogous to Euclidean plane geometry and trigonometry, but also have some important differences. The sphere can be studied either ''extrinsically'' as a surface embedded in 3-dimensional Euclidean space (part of the study of solid geometry), or ''intrinsically'' using methods that only involve the surface itself without reference to any surrounding space. Principles In plane (Euclidean) geometry, the basic concepts are points and (straight) lines. In spherical geometry, the basic concepts are points and great circles. However, two great circles on a plane intersect in two antipodal points, unlike coplan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Geometry
Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point (rather than two). Because of this, the elliptic geometry described in this article is sometimes referred to as ''single elliptic geometry'' whereas spherical geometry is sometimes referred to as ''double elliptic geometry''. The appearance of this geometry in the nineteenth century stimulated the development of non-Euclidean geometry generally, including hyperbolic geometry. Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the interior angles of any triangle is always greater than 180°. Definitions Elliptic geometry may be derived from spherical geometry by identifying antipodal points of the sphere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Felix Klein
Felix Christian Klein (; ; 25 April 1849 – 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations between geometry and group theory. His 1872 Erlangen program classified geometries by their basic symmetry groups and was an influential synthesis of much of the mathematics of the time. During his tenure at the University of Göttingen, Klein was able to turn it into a center for mathematical and scientific research through the establishment of new lectures, professorships, and institutes. His Felix Klein Protocols, seminars covered most areas of mathematics then known as well as their applications. Klein also devoted considerable time to mathematical instruction and promoted mathematics education reform at all grade levels in Germany and abroad. He became the first president of the International Commission on Mathematical Instruction in 1908 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rapidity
In special relativity, the classical concept of velocity is converted to rapidity to accommodate the limit determined by the speed of light. Velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with distance and time coordinates. Using the inverse hyperbolic function , the rapidity corresponding to velocity is where is the speed of light. For low speeds, by the small-angle approximation, is approximately . Since in relativity any velocity is constrained to the interval the ratio satisfies . The inverse hyperbolic tangent has the unit interval for its domain and the whole real line for its image; that is, the interval maps ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]