HOME

TheInfoList



OR:

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the
Ancient Greek Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek ...
word (), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The precise
definition A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definitio ...
varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. In modern
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
, an axiom is a premise or starting point for reasoning. In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an ''axiom'' may be a " logical axiom" or a " non-logical axiom". Logical axioms are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (''A'' and ''B'') implies ''A''), while non-logical axioms are substantive assertions about the elements of the domain of a specific mathematical theory, for example ''a'' + 0 = ''a'' in integer arithmetic. Non-logical axioms may also be called "postulates", "assumptions" or "proper axioms". In most cases, a non-logical axiom is simply a formal logical expression used in deduction to build a mathematical theory, and might or might not be self-evident in nature (e.g., the parallel postulate in
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
). To axiomatize a system of knowledge is to show that its claims can be derived from a small, well-understood set of sentences (the axioms), and there are typically many ways to axiomatize a given mathematical domain. Any axiom is a statement that serves as a starting point from which other statements are logically derived. Whether it is meaningful (and, if so, what it means) for an axiom to be "true" is a subject of debate in the philosophy of mathematics.


Etymology

The word ''axiom'' comes from the Greek word (''axíōma''), a
verbal noun Historically, grammarians have described a verbal noun or gerundial noun as a verb form that functions as a noun. An example of a verbal noun in English is 'sacking' as in the sentence "The ''sacking'' of the city was an epochal event" (wherein ...
from the verb (''axioein''), meaning "to deem worthy", but also "to require", which in turn comes from (''áxios''), meaning "being in balance", and hence "having (the same) value (as)", "worthy", "proper". Among the
ancient Greek Ancient Greek (, ; ) includes the forms of the Greek language used in ancient Greece and the classical antiquity, ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Greek ...
philosopher Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational an ...
s and mathematicians, axioms were taken to be immediately evident propositions, foundational and common to many fields of investigation, and self-evidently true without any further argument or proof. The root meaning of the word ''postulate'' is to "demand"; for instance,
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
demands that one agree that some things can be done (e.g., any two points can be joined by a straight line). Ancient geometers maintained some distinction between axioms and postulates. While commenting on Euclid's books, Proclus remarks that " Geminus held that this thPostulate should not be classed as a postulate but as an axiom, since it does not, like the first three Postulates, assert the possibility of some construction but expresses an essential property."
Boethius Anicius Manlius Severinus Boethius, commonly known simply as Boethius (; Latin: ''Boetius''; 480–524 AD), was a Roman Roman Senate, senator, Roman consul, consul, ''magister officiorum'', polymath, historian, and philosopher of the Early Middl ...
translated 'postulate' as ''petitio'' and called the axioms ''notiones communes'' but in later manuscripts this usage was not always strictly kept.


Historical development


Early Greeks

The logico-deductive method whereby conclusions (new knowledge) follow from premises (old knowledge) through the application of sound arguments ( syllogisms, rules of inference) was developed by the ancient Greeks, and has become the core principle of modern mathematics. Tautologies excluded, nothing can be deduced if nothing is assumed. Axioms and postulates are thus the basic assumptions underlying a given body of deductive knowledge. They are accepted without demonstration. All other assertions ( theorems, in the case of mathematics) must be proven with the aid of these basic assumptions. However, the interpretation of mathematical knowledge has changed from ancient times to the modern, and consequently the terms ''axiom'' and ''postulate'' hold a slightly different meaning for the present day mathematician, than they did for
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
and
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
. The ancient Greeks considered
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
as just one of several
science Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
s, and held the theorems of geometry on par with scientific facts. As such, they developed and used the logico-deductive method as a means of avoiding error, and for structuring and communicating knowledge. Aristotle's posterior analytics is a definitive exposition of the classical view. An "axiom", in classical terminology, referred to a self-evident assumption common to many branches of science. A good example would be the assertion that:
When an equal amount is taken from equals, an equal amount results.
At the foundation of the various sciences lay certain additional
hypotheses A hypothesis (: hypotheses) is a proposed explanation for a phenomenon. A scientific method, scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educ ...
that were accepted without proof. Such a hypothesis was termed a ''postulate''. While the axioms were common to many sciences, the postulates of each particular science were different. Their validity had to be established by means of real-world experience. Aristotle warns that the content of a science cannot be successfully communicated if the learner is in doubt about the truth of the postulates. The classical approach is well-illustrated by Euclid's ''Elements'', where a list of postulates is given (common-sensical geometric facts drawn from our experience), followed by a list of "common notions" (very basic, self-evident assertions). :;Postulates :# It is possible to draw a straight line from any point to any other point. :# It is possible to extend a
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
continuously in both directions. :# It is possible to describe a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
with any center and any radius. :# It is true that all right angles are equal to one another. :# (" Parallel postulate") It is true that, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, intersect on that side on which are the
angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
s less than the two right angles. :;Common notions: :# Things which are equal to the same thing are also equal to one another. :# If equals are added to equals, the wholes are equal. :# If equals are subtracted from equals, the remainders are equal. :# Things which coincide with one another are equal to one another. :# The whole is greater than the part.


Modern development

A lesson learned by mathematics in the last 150 years is that it is useful to strip the meaning away from the mathematical assertions (axioms, postulates, propositions, theorems) and definitions. One must concede the need for primitive notions, or undefined terms or concepts, in any study. Such abstraction or formalization makes mathematical knowledge more general, capable of multiple different meanings, and therefore useful in multiple contexts. Alessandro Padoa, Mario Pieri, and
Giuseppe Peano Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much Mathematical notati ...
were pioneers in this movement. Structuralist mathematics goes further, and develops theories and axioms (e.g. field theory,
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
,
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, vector spaces) without ''any'' particular application in mind. The distinction between an "axiom" and a "postulate" disappears. The postulates of Euclid are profitably motivated by saying that they lead to a great wealth of geometric facts. The truth of these complicated facts rests on the acceptance of the basic hypotheses. However, by throwing out Euclid's fifth postulate, one can get theories that have meaning in wider contexts (e.g.,
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
). As such, one must simply be prepared to use labels such as "line" and "parallel" with greater flexibility. The development of hyperbolic geometry taught mathematicians that it is useful to regard postulates as purely formal statements, and not as facts based on experience. When mathematicians employ the field axioms, the intentions are even more abstract. The propositions of field theory do not concern any one particular application; the mathematician now works in complete abstraction. There are many examples of fields; field theory gives correct knowledge about them all. It is not correct to say that the axioms of field theory are "propositions that are regarded as true without proof." Rather, the field axioms are a set of constraints. If any given system of addition and multiplication satisfies these constraints, then one is in a position to instantly know a great deal of extra information about this system. Modern mathematics formalizes its foundations to such an extent that mathematical theories can be regarded as mathematical objects, and mathematics itself can be regarded as a branch of logic. Frege, Russell,
Poincaré Poincaré is a French surname. Notable people with the surname include: * Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philos ...
,
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosophy of mathematics, philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad ...
, and Gödel are some of the key figures in this development. Another lesson learned in modern mathematics is to examine purported proofs carefully for hidden assumptions. In the modern understanding, a set of axioms is any collection of formally stated assertions from which other formally stated assertions follow – by the application of certain well-defined rules. In this view, logic becomes just another formal system. A set of axioms should be
consistent In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences ...
; it should be impossible to derive a contradiction from the axioms. A set of axioms should also be non-redundant; an assertion that can be deduced from other axioms need not be regarded as an axiom. It was the early hope of modern logicians that various branches of mathematics, perhaps all of mathematics, could be derived from a consistent collection of basic axioms. An early success of the formalist program was Hilbert's formalization of
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
, and the related demonstration of the consistency of those axioms. In a wider context, there was an attempt to base all of mathematics on Cantor's
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
. Here, the emergence of Russell's paradox and similar antinomies of naïve set theory raised the possibility that any such system could turn out to be inconsistent. The formalist project suffered a setback a century ago, when Gödel showed that it is possible, for any sufficiently large set of axioms ( Peano's axioms, for example) to construct a statement whose truth is independent of that set of axioms. As a corollary, Gödel proved that the consistency of a theory like Peano arithmetic is an unprovable assertion within the scope of that theory. It is reasonable to believe in the consistency of Peano arithmetic because it is satisfied by the system of
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s, an infinite but intuitively accessible formal system. However, at present, there is no known way of demonstrating the consistency of the modern Zermelo–Fraenkel axioms for set theory. Furthermore, using techniques of forcing ( Cohen) one can show that the continuum hypothesis (Cantor) is independent of the Zermelo–Fraenkel axioms. Thus, even this very general set of axioms cannot be regarded as the definitive foundation for mathematics.


Other sciences

Experimental sciences - as opposed to mathematics and logic - also have general founding assertions from which a deductive reasoning can be built so as to express propositions that predict properties - either still general or much more specialized to a specific experimental context. For instance, Newton's laws in classical mechanics,
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, Electrical network, electr ...
in classical electromagnetism, Einstein's equation in general relativity, Mendel's laws of genetics, Darwin's
Natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
law, etc. These founding assertions are usually called ''principles'' or ''postulates'' so as to distinguish from mathematical ''axioms''. As a matter of facts, the role of axioms in mathematics and postulates in experimental sciences is different. In mathematics one neither "proves" nor "disproves" an axiom. A set of mathematical axioms gives a set of rules that fix a conceptual realm, in which the theorems logically follow. In contrast, in experimental sciences, a set of postulates shall allow deducing results that match or do not match experimental results. If postulates do not allow deducing experimental predictions, they do not set a scientific conceptual framework and have to be completed or made more accurate. If the postulates allow deducing predictions of experimental results, the comparison with experiments allows falsifying ( falsified) the theory that the postulates install. A theory is considered valid as long as it has not been falsified. Now, the transition between the mathematical axioms and scientific postulates is always slightly blurred, especially in physics. This is due to the heavy use of mathematical tools to support the physical theories. For instance, the introduction of Newton's laws rarely establishes as a prerequisite neither Euclidean geometry or differential calculus that they imply. It became more apparent when
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
first introduced
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
where the invariant quantity is no more the Euclidean length l (defined as l^2 = x^2 + y^2 + z^2) > but the Minkowski spacetime interval s (defined as s^2 = c^2 t^2 - x^2 - y^2 - z^2), and then
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
where flat Minkowskian geometry is replaced with pseudo-Riemannian geometry on curved manifolds. In quantum physics, two sets of postulates have coexisted for some time, which provide a very nice example of falsification. The ' Copenhagen school' (
Niels Bohr Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
,
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
, Max Born) developed an operational approach with a complete mathematical formalism that involves the description of quantum system by vectors ('states') in a separable Hilbert space, and physical quantities as linear operators that act in this Hilbert space. This approach is fully falsifiable and has so far produced the most accurate predictions in physics. But it has the unsatisfactory aspect of not allowing answers to questions one would naturally ask. For this reason, another ' hidden variables' approach was developed for some time by Albert Einstein,
Erwin Schrödinger Erwin Rudolf Josef Alexander Schrödinger ( ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was an Austrian-Irish theoretical physicist who developed fundamental results in quantum field theory, quantum theory. In particul ...
, David Bohm. It was created so as to try to give deterministic explanation to phenomena such as entanglement. This approach assumed that the Copenhagen school description was not complete, and postulated that some yet unknown variable was to be added to the theory so as to allow answering some of the questions it does not answer (the founding elements of which were discussed as the EPR paradox in 1935). Taking this idea seriously, John Bell derived in 1964 a prediction that would lead to different experimental results ( Bell's inequalities) in the Copenhagen and the Hidden variable case. The experiment was conducted first by Alain Aspect in the early 1980s, and the result excluded the simple hidden variable approach (sophisticated hidden variables could still exist but their properties would still be more disturbing than the problems they try to solve). This does not mean that the conceptual framework of quantum physics can be considered as complete now, since some open questions still exist (the limit between the quantum and classical realms, what happens during a quantum measurement, what happens in a completely closed quantum system such as the universe itself, etc.).


Mathematical logic

In the field of
mathematical logic Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...
, a clear distinction is made between two notions of axioms: ''logical'' and ''non-logical'' (somewhat similar to the ancient distinction between "axioms" and "postulates" respectively).


Logical axioms

These are certain formulas in a
formal language In logic, mathematics, computer science, and linguistics, a formal language is a set of strings whose symbols are taken from a set called "alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also c ...
that are universally valid, that is, formulas that are satisfied by every assignment of values. Usually one takes as logical axioms ''at least'' some minimal set of tautologies that is sufficient for proving all tautologies in the language; in the case of
predicate logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables ove ...
more logical axioms than that are required, in order to prove logical truths that are not tautologies in the strict sense.


Examples


=Propositional logic

= In
propositional logic The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contra ...
, it is common to take as logical axioms all formulae of the following forms, where \phi, \chi, and \psi can be any formulae of the language and where the included primitive connectives are only "\neg" for
negation In logic, negation, also called the logical not or logical complement, is an operation (mathematics), operation that takes a Proposition (mathematics), proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \over ...
of the immediately following proposition and "\to" for implication from antecedent to consequent propositions: # \phi \to (\psi \to \phi) # (\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi)) # (\lnot \phi \to \lnot \psi) \to (\psi \to \phi). Each of these patterns is an '' axiom schema'', a rule for generating an infinite number of axioms. For example, if A, B, and C are propositional variables, then A \to (B \to A) and (A \to \lnot B) \to (C \to (A \to \lnot B)) are both instances of axiom schema 1, and hence are axioms. It can be shown that with only these three axiom schemata and '' modus ponens'', one can prove all tautologies of the propositional calculus. It can also be shown that no pair of these schemata is sufficient for proving all tautologies with ''modus ponens''. Other axiom schemata involving the same or different sets of primitive connectives can be alternatively constructed. These axiom schemata are also used in the predicate calculus, but additional logical axioms are needed to include a quantifier in the calculus.


=First-order logic

=
Axiom of Equality.
Let \mathfrak be a first-order language. For each variable x, the below formula is universally valid.
x = x
This means that, for any variable symbol x, the formula x = x can be regarded as an axiom. Additionally, in this example, for this not to fall into vagueness and a never-ending series of "primitive notions", either a precise notion of what we mean by x = x (or, for that matter, "to be equal") has to be well established first, or a purely formal and syntactical usage of the symbol = has to be enforced, only regarding it as a string and only a string of symbols, and mathematical logic does indeed do that. Another, more interesting example axiom scheme, is that which provides us with what is known as Universal Instantiation:
Axiom scheme for Universal Instantiation.
Given a formula \phi in a first-order language \mathfrak, a variable x and a term t that is substitutable for x in \phi, the below formula is universally valid.
\forall x \, \phi \to \phi^x_t
Where the symbol \phi^x_t stands for the formula \phi with the term t substituted for x. (See Substitution of variables.) In informal terms, this example allows us to state that, if we know that a certain property P holds for every x and that t stands for a particular object in our structure, then we should be able to claim P(t). Again, ''we are claiming that the formula'' \forall x \phi \to \phi^x_t ''is valid'', that is, we must be able to give a "proof" of this fact, or more properly speaking, a ''metaproof''. These examples are ''metatheorems'' of our theory of mathematical logic since we are dealing with the very concept of ''proof'' itself. Aside from this, we can also have Existential Generalization:
Axiom scheme for Existential Generalization. Given a formula \phi in a first-order language \mathfrak, a variable x and a term t that is substitutable for x in \phi, the below formula is universally valid.
\phi^x_t \to \exists x \, \phi


Non-logical axioms

Non-logical axioms are formulas that play the role of theory-specific assumptions. Reasoning about two different structures, for example, the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s and the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, may involve the same logical axioms; the non-logical axioms aim to capture what is special about a particular structure (or set of structures, such as groups). Thus non-logical axioms, unlike logical axioms, are not '' tautologies''. Another name for a non-logical axiom is ''postulate''.Mendelson, "3. First-Order Theories: Proper Axioms" of Ch. 2 Almost every modern
mathematical theory A theory is a systematic and rational form of abstract thinking about a phenomenon, or the conclusions derived from such thinking. It involves contemplative and logical reasoning, often supported by processes such as observation, experimentation, ...
starts from a given set of non-logical axioms, and it was thought that, in principle, every theory could be axiomatized in this way and formalized down to the bare language of logical formulas. Non-logical axioms are often simply referred to as ''axioms'' in mathematical
discourse Discourse is a generalization of the notion of a conversation to any form of communication. Discourse is a major topic in social theory, with work spanning fields such as sociology, anthropology, continental philosophy, and discourse analysis. F ...
. This does not mean that it is claimed that they are true in some absolute sense. For instance, in some groups, the group operation is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, and this can be asserted with the introduction of an additional axiom, but without this axiom, we can do quite well developing (the more general) group theory, and we can even take its negation as an axiom for the study of non-commutative groups.


Examples

This section gives examples of mathematical theories that are developed entirely from a set of non-logical axioms (axioms, henceforth). A rigorous treatment of any of these topics begins with a specification of these axioms. Basic theories, such as
arithmetic Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. ...
,
real analysis In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include co ...
and
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
are often introduced non-axiomatically, but implicitly or explicitly there is generally an assumption that the axioms being used are the axioms of
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
with choice, abbreviated ZFC, or some very similar system of axiomatic set theory like Von Neumann–Bernays–Gödel set theory, a conservative extension of ZFC. Sometimes slightly stronger theories such as Morse–Kelley set theory or set theory with a strongly inaccessible cardinal allowing the use of a Grothendieck universe is used, but in fact, most mathematicians can actually prove all they need in systems weaker than ZFC, such as
second-order arithmetic In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation of mathematics, foundation for much, but not all, ...
. The study of topology in mathematics extends all over through point set topology,
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, differential topology, and all the related paraphernalia, such as homology theory, homotopy theory. The development of ''abstract algebra'' brought with itself
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, rings, fields, and
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
. This list could be expanded to include most fields of mathematics, including
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude (mathematics), magnitude, mass, and probability of events. These seemingl ...
, ergodic theory,
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
, representation theory, and
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
.


=Arithmetic

= The Peano axioms are the most widely used ''axiomatization'' of first-order arithmetic. They are a set of axioms strong enough to prove many important facts about
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
and they allowed Gödel to establish his famous second incompleteness theorem.Mendelson, "5. The Fixed Point Theorem. Gödel's Incompleteness Theorem" of Ch. 2 We have a language \mathfrak_ = \ where 0 is a constant symbol and S is a unary function and the following axioms: # \forall x. \lnot (Sx = 0) # \forall x. \forall y. (Sx = Sy \to x = y) # (\phi(0) \land \forall x.\,(\phi(x) \to \phi(Sx))) \to \forall x.\phi(x) for any \mathfrak_ formula \phi with one free variable. The standard structure is \mathfrak = \langle\N, 0, S\rangle where \N is the set of natural numbers, S is the
successor function In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by ''S'', so ''S''(''n'') = ''n'' +1. For example, ''S''(1) = 2 and ''S''(2) = 3. The successor functio ...
and 0 is naturally interpreted as the number 0.


=Euclidean geometry

= Probably the oldest, and most famous, list of axioms are the 4 + 1 Euclid's postulates of plane geometry. The axioms are referred to as "4 + 1" because for nearly two millennia the fifth (parallel) postulate ("through a point outside a line there is exactly one parallel") was suspected of being derivable from the first four. Ultimately, the fifth postulate was found to be independent of the first four. One can assume that exactly one parallel through a point outside a line exists, or that infinitely many exist. This choice gives us two alternative forms of geometry in which the interior
angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
s of a
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
add up to exactly 180 degrees or less, respectively, and are known as Euclidean and hyperbolic geometries. If one also removes the second postulate ("a line can be extended indefinitely") then elliptic geometry arises, where there is no parallel through a point outside a line, and in which the interior angles of a triangle add up to more than 180 degrees.


=Real analysis

= The objectives of the study are within the domain of
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
. The real numbers are uniquely picked out (up to
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
) by the properties of a ''Dedekind complete ordered field'', meaning that any nonempty set of real numbers with an upper bound has a least upper bound. However, expressing these properties as axioms requires the use of second-order logic. The Löwenheim–Skolem theorems tell us that if we restrict ourselves to first-order logic, any axiom system for the reals admits other models, including both models that are smaller than the reals and models that are larger. Some of the latter are studied in non-standard analysis.


Role in mathematical logic


Deductive systems and completeness

A deductive system consists of a set \Lambda of logical axioms, a set \Sigma of non-logical axioms, and a set \ of ''rules of inference''. A desirable property of a deductive system is that it be complete. A system is said to be complete if, for all formulas \phi,
\text\Sigma \models \phi\text\Sigma \vdash \phi
that is, for any statement that is a ''logical consequence'' of \Sigma there actually exists a ''deduction'' of the statement from \Sigma. This is sometimes expressed as "everything that is true is provable", but it must be understood that "true" here means "made true by the set of axioms", and not, for example, "true in the intended interpretation".
Gödel's completeness theorem Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantics, semantic truth and syntactic Provability logic, provability in first-order logic. The completeness theorem applies ...
establishes the completeness of a certain commonly used type of deductive system. Note that "completeness" has a different meaning here than it does in the context of Gödel's first incompleteness theorem, which states that no ''recursive'', ''consistent'' set of non-logical axioms \Sigma of the Theory of Arithmetic is ''complete'', in the sense that there will always exist an arithmetic statement \phi such that neither \phi nor \lnot\phi can be proved from the given set of axioms. There is thus, on the one hand, the notion of ''completeness of a deductive system'' and on the other hand that of ''completeness of a set of non-logical axioms''. The completeness theorem and the incompleteness theorem, despite their names, do not contradict one another.


Further discussion

Early
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
s regarded axiomatic geometry as a model of physical space, implying, there could ultimately only be one such model. The idea that alternative mathematical systems might exist was very troubling to mathematicians of the 19th century and the developers of systems such as
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
made elaborate efforts to derive them from traditional arithmetic. Galois showed just before his untimely death that these efforts were largely wasted. Ultimately, the abstract parallels between algebraic systems were seen to be more important than the details, and modern algebra was born. In the modern view, axioms may be any set of formulas, as long as they are not known to be inconsistent.


See also

* Axiomatic system * Dogma *
First principle In philosophy and science, a first principle is a basic proposition or assumption that cannot be deduced from any other proposition or assumption. First principles in philosophy are from first cause attitudes and taught by Aristotelians, and nuan ...
, axiom in science and philosophy * List of axioms *
Model theory In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mat ...
* Regulæ Juris *
Theorem In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to esta ...
* Presupposition *
Principle A principle may relate to a fundamental truth or proposition that serves as the foundation for a system of beliefs or behavior or a chain of reasoning. They provide a guide for behavior or evaluation. A principle can make values explicit, so t ...


Notes


References


Further reading

* Mendelson, Elliot (1987). ''Introduction to mathematical logic.'' Belmont, California: Wadsworth & Brooks. *


External links

* *
''Metamath'' axioms page
{{Mathematical logic Concepts in logic