HOME





Self-evidence
In epistemology (theory of knowledge), a self-evident proposition is a proposition that is known to be true by understanding its meaning without proof, and/or by ordinary human reason. Some epistemologists deny that any proposition can be self-evident. For most others, one's belief that oneself is conscious and possesses free will are offered as examples of self-evidence. However, one's belief that someone else is conscious or has free will are not epistemically self-evident. The following proposition is often said to be self-evident: "A finite whole is greater than, or equal to, any of its parts". A logical argument for a self-evident conclusion would demonstrate only an ignorance of the purpose of persuasively arguing for the conclusion based on one or more premises that differ from it (see ' and begging the question). Analytic propositions It is sometimes said that a self-evident proposition is one whose denial is self-contradictory. It is also sometimes said that an anal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Epistemology
Epistemology is the branch of philosophy that examines the nature, origin, and limits of knowledge. Also called "the theory of knowledge", it explores different types of knowledge, such as propositional knowledge about facts, practical knowledge in the form of skills, and knowledge by acquaintance as a familiarity through experience. Epistemologists study the concepts of belief, truth, and justification to understand the nature of knowledge. To discover how knowledge arises, they investigate sources of justification, such as perception, introspection, memory, reason, and testimony. The school of skepticism questions the human ability to attain knowledge while fallibilism says that knowledge is never certain. Empiricists hold that all knowledge comes from sense experience, whereas rationalists believe that some knowledge does not depend on it. Coherentists argue that a belief is justified if it coheres with other beliefs. Foundationalists, by contrast, maintain th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. In modern logic, an axiom is a premise or starting point for reasoning. In mathematics, an ''axiom'' may be a " logical axiom" or a " non-logical axiom". Logical axioms are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (''A'' and ''B'') implies ''A''), while non-logical axioms are substantive assertions about the elements of the domain of a specific mathematical theory, for example ''a'' + 0 = ''a'' in integer arithmetic. N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


A Priori
('from the earlier') and ('from the later') are Latin phrases used in philosophy to distinguish types of knowledge, Justification (epistemology), justification, or argument by their reliance on experience. knowledge is independent from any experience. Examples include mathematics,Some associationist philosophers have contended that mathematics comes from experience and is not a form of any ''a priori'' knowledge () tautology (logic), tautologies and Deductive reasoning, deduction from pure reason.Galen Strawson has stated that an argument is one in which "you can see that it is Truth, true just lying on your couch. You don't have to get up off your couch and go outside and examine the way things are in the physical world. You don't have to do any science." () knowledge depends on empirical evidence. Examples include most fields of science and aspects of anecdotal evidence, personal knowledge. The terms originate from the analytic methods found in ''Organon'', a collection ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Evidence
Evidence for a proposition is what supports the proposition. It is usually understood as an indication that the proposition is truth, true. The exact definition and role of evidence vary across different fields. In epistemology, evidence is what Justification (epistemology), justifies beliefs or what makes it rational to hold a certain wikt:doxastic, doxastic attitude. For example, a perceptual experience of a tree may serve as evidence to justify the belief that there is a tree. In this role, evidence is usually understood as a private mental state. In Phenomenology (philosophy), phenomenology, evidence is limited to intuitive knowledge, often associated with the controversial assumption that it provides indubitable access to truth. In the science, scientific evidence is information gained through the scientific method that confirms or disconfirms Hypothesis#Scientific hypothesis, scientific hypotheses, acting as a neutral arbiter between competing Scientific theory, theories. Mea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sources Of Knowledge
Knowledge is an Declarative knowledge, awareness of facts, a Knowledge by acquaintance, familiarity with individuals and situations, or a Procedural knowledge, practical skill. Knowledge of facts, also called propositional knowledge, is often characterized as Truth, true belief that is distinct from opinion or guesswork by virtue of Justification (epistemology), justification. While there is wide agreement among philosophers that propositional knowledge is a form of true belief, many controversies focus on justification. This includes questions like how to understand justification, whether it is needed at all, and whether something else besides it is needed. These controversies intensified in the latter half of the 20th century due to a series of thought experiments called ''Gettier cases'' that provoked alternative definitions. Knowledge can be produced in many ways. The main source of empirical knowledge is perception, which involves the usage of the senses to learn about ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Regress
Infinite regress is a philosophical concept to describe a series of entities. Each entity in the series depends on its predecessor, following a recursive principle. For example, the epistemic regress is a series of beliefs in which the justification of each belief depends on the justification of the belief that comes before it. An infinite regress argument is an argument against a theory based on the fact that this theory leads to an infinite regress. For such an argument to be successful, it must demonstrate not just that the theory in question entails an infinite regress but also that this regress is ''vicious''. There are different ways in which a regress can be vicious. The most serious form of viciousness involves a contradiction in the form of ''metaphysical impossibility''. Other forms occur when the infinite regress is responsible for the theory in question being implausible or for its failure to solve the problem it was formulated to solve. Traditionally, it was of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-refuting Idea
A self-refuting idea or self-defeating idea is an idea or statement whose falsehood is a logical consequence of the act or situation of holding them to be true. Many ideas are called self-refuting by their detractors, and such accusations are therefore almost always controversial, with defenders stating that the idea is being misunderstood or that the argument is invalid. For these reasons, none of the ideas below are unambiguously or incontrovertibly self-refuting. These ideas are often used as axioms, which are definitions taken to be true ( tautological assumptions), and cannot be used to test themselves, for doing so would lead to only two consequences: consistency (circular reasoning) or exception (self- contradiction). Variations Directly self-denying statements Directly self-denying statements are characterised by being necessarily (or inherently) false. The Epimenides paradox is a statement of the form "this statement is false". Such statements troubled philosophers, es ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Self-reference
Self-reference is a concept that involves referring to oneself or one's own attributes, characteristics, or actions. It can occur in language, logic, mathematics, philosophy, and other fields. In natural or formal languages, self-reference occurs when a sentence, idea or formula refers to itself. The reference may be expressed either directly—through some intermediate sentence or formula—or by means of some encoding. In philosophy, self-reference also refers to the ability of a subject to speak of or refer to itself, that is, to have the kind of thought expressed by the first person nominative singular pronoun "I" in English. Self-reference is studied and has applications in mathematics, philosophy, computer programming, second-order cybernetics, and linguistics, as well as in humor. Self-referential statements are sometimes paradoxical, and can also be considered recursive. In logic, mathematics and computing In classical philosophy, paradoxes were created b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primitive Notion
In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to Intuition (knowledge), intuition or taken to be self-evident. In an axiomatic theory, relations between primitive notions are restricted by axioms. Some authors refer to the latter as "defining" primitive notions by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress (per the regress problem). For example, in contemporary geometry, ''point (geometry), point'', ''line'', and ''contains'' are some primitive notions. Details Alfred Tarski explained the role of primitive notions as follows: :When we set out to construct a given discipline, we distinguish, first of all, a certain small group of expressions of this discipline that seem to us to be immediately understandable; the expressions in this group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Law Of Identity
In logic, the law of identity states that each thing is identical with itself. It is the first of the traditional three laws of thought, along with the law of noncontradiction, and the law of excluded middle. However, few systems of logic are built on just these laws. History Ancient philosophy The earliest recorded use of the law appears in Plato's dialogue '' Theaetetus'' (185a), wherein Socrates attempts to establish that what we call "sounds" and "colours" are two different classes of thing: It is used explicitly only once in Aristotle, in a proof in the '' Prior Analytics'': Medieval philosophy Aristotle believed the law of non-contradiction to be the most fundamental law. Both Thomas Aquinas (''Met.'' IV, lect. 6) and Duns Scotus (''Quaest. sup. Met.'' IV, Q. 3) follow Aristotle in this respect. Antonius Andreas, the Spanish disciple of Scotus (d. 1320), argues that the first place should belong to the law "Every Being is a Being" (''Omne Ens est Ens'', Qq. in Met ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]