Fixed point theorem
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a fixed-point theorem is a result saying that a function ''F'' will have at least one fixed point (a point ''x'' for which ''F''(''x'') = ''x''), under some conditions on ''F'' that can be stated in general terms. Some authors claim that results of this kind are amongst the most generally useful in mathematics.


In mathematical analysis

The
Banach fixed-point theorem In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certa ...
(1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. By contrast, the Brouwer fixed-point theorem (1911) is a non- constructive result: it says that any
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in val ...
from the closed
unit ball Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (a ...
in ''n''-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
to itself must have a fixed point, but it doesn't describe how to find the fixed point (See also
Sperner's lemma In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. It states that every Sperner coloring (described below) of a triangulation of an ...
). For example, the cosine function is continuous in ˆ’1,1and maps it into ˆ’1, 1 and thus must have a fixed point. This is clear when examining a sketched graph of the cosine function; the fixed point occurs where the cosine curve ''y'' = cos(''x'') intersects the line ''y'' = ''x''. Numerically, the fixed point is approximately ''x'' = 0.73908513321516 (thus ''x'' = cos(''x'') for this value of ''x''). The Lefschetz fixed-point theorem (and the
Nielsen fixed-point theorem Nielsen theory is a branch of mathematical research with its origins in topological fixed-point theory. Its central ideas were developed by Danish mathematician Jakob Nielsen, and bear his name. The theory developed in the study of the so-called ...
) from
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
is notable because it gives, in some sense, a way to count fixed points. There are a number of generalisations to
Banach fixed-point theorem In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certa ...
and further; these are applied in PDE theory. See
fixed-point theorems in infinite-dimensional spaces In mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first resu ...
. The collage theorem in fractal compression proves that, for many images, there exists a relatively small description of a function that, when iteratively applied to any starting image, rapidly converges on the desired image.


In algebra and discrete mathematics

The Knaster–Tarski theorem states that any order-preserving function on a
complete lattice In mathematics, a complete lattice is a partially ordered set in which ''all'' subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a ''conditionally complete lattice.'' ...
has a fixed point, and indeed a ''smallest'' fixed point. See also Bourbaki–Witt theorem. The theorem has applications in
abstract interpretation In computer science, abstract interpretation is a theory of sound approximation of the semantics of computer programs, based on monotonic functions over ordered sets, especially lattices. It can be viewed as a partial execution of a computer ...
, a form of static program analysis. A common theme in
lambda calculus Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation th ...
is to find fixed points of given lambda expressions. Every lambda expression has a fixed point, and a fixed-point combinator is a "function" which takes as input a lambda expression and produces as output a fixed point of that expression. An important fixed-point combinator is the Y combinator used to give recursive definitions. In
denotational semantics In computer science, denotational semantics (initially known as mathematical semantics or Scott–Strachey semantics) is an approach of formalizing the meanings of programming languages by constructing mathematical objects (called ''denotations' ...
of programming languages, a special case of the Knaster–Tarski theorem is used to establish the semantics of recursive definitions. While the fixed-point theorem is applied to the "same" function (from a logical point of view), the development of the theory is quite different. The same definition of recursive function can be given, in
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has sinc ...
, by applying
Kleene's recursion theorem In computability theory, Kleene's recursion theorems are a pair of fundamental results about the application of computable functions to their own descriptions. The theorems were first proved by Stephen Kleene in 1938 and appear in his 1952 ...
. These results are not equivalent theorems; the Knaster–Tarski theorem is a much stronger result than what is used in denotational semantics. However, in light of the Church–Turing thesis their intuitive meaning is the same: a recursive function can be described as the least fixed point of a certain functional, mapping functions to functions. The above technique of iterating a function to find a fixed point can also be used in
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
; the fixed-point lemma for normal functions states that any continuous strictly increasing function from ordinals to ordinals has one (and indeed many) fixed points. Every
closure operator In mathematics, a closure operator on a set ''S'' is a function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets X,Y\subseteq S : Closure operators are de ...
on a poset has many fixed points; these are the "closed elements" with respect to the closure operator, and they are the main reason the closure operator was defined in the first place. Every involution on a finite set with an odd number of elements has a fixed point; more generally, for every involution on a finite set of elements, the number of elements and the number of fixed points have the same
parity Parity may refer to: * Parity (computing) ** Parity bit in computing, sets the parity of data for the purpose of error detection ** Parity flag in computing, indicates if the number of set bits is odd or even in the binary representation of the ...
. Don Zagier used these observations to give a one-sentence proof of Fermat's theorem on sums of two squares, by describing two involutions on the same set of triples of integers, one of which can easily be shown to have only one fixed point and the other of which has a fixed point for each representation of a given prime (congruent to 1 mod 4) as a sum of two squares. Since the first involution has an odd number of fixed points, so does the second, and therefore there always exists a representation of the desired form..


List of fixed-point theorems

*
Atiyah–Bott fixed-point theorem In mathematics, the Atiyah–Bott fixed-point theorem, proven by Michael Atiyah and Raoul Bott in the 1960s, is a general form of the Lefschetz fixed-point theorem for smooth manifolds ''M'', which uses an elliptic complex on ''M''. This is a ...
*
Banach fixed-point theorem In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certa ...
* Bekić's theorem * Borel fixed-point theorem * Bourbaki–Witt theorem * Browder fixed-point theorem * Brouwer fixed-point theorem * Caristi fixed-point theorem *
Diagonal lemma In mathematical logic, the diagonal lemma (also known as diagonalization lemma, self-reference lemma or fixed point theorem) establishes the existence of self-referential sentences in certain formal theories of the natural numbers—specific ...
, also known as the fixed-point lemma, for producing self-referential sentences of first-order logic * Discrete fixed-point theorems * Earle-Hamilton fixed-point theorem * Fixed-point combinator, which shows that every term in untyped
lambda calculus Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation th ...
has a fixed point * Fixed-point lemma for normal functions * Fixed-point property *
Fixed-point theorems in infinite-dimensional spaces In mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first resu ...
* Injective metric space * Kakutani fixed-point theorem *
Kleene fixed-point theorem In the mathematical areas of order and lattice theory, the Kleene fixed-point theorem, named after American mathematician Stephen Cole Kleene, states the following: :Kleene Fixed-Point Theorem. Suppose (L, \sqsubseteq) is a directed-complete pa ...
* Knaster–Tarski theorem * Lefschetz fixed-point theorem *
Nielsen fixed-point theorem Nielsen theory is a branch of mathematical research with its origins in topological fixed-point theory. Its central ideas were developed by Danish mathematician Jakob Nielsen, and bear his name. The theory developed in the study of the so-called ...
* Poincaré–Birkhoff theorem proves the existence of two fixed points *
Ryll-Nardzewski fixed-point theorem In functional analysis, a branch of mathematics, the Ryll-Nardzewski fixed-point theorem states that if E is a normed vector space and K is a nonempty convex subset of E that is compact under the weak topology, then every group (or equivalently: eve ...
* Schauder fixed-point theorem * Topological degree theory *
Tychonoff fixed-point theorem In mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first resu ...


Footnotes


References

* * * * * * * *{{cite book , author1=Šaškin, Jurij A , author2=Minachin, Viktor , author3=Mackey, George W. , title=Fixed Points , year=1991 , publisher=American Mathematical Society , isbn=0-8218-9000-X , url-access=registration , url=https://archive.org/details/fixedpoints0002shas


External links


Fixed Point Method
Closure operators Iterative methods