Arithmetic algebraic geometry
   HOME

TheInfoList



OR:

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
. Arithmetic geometry is centered around
Diophantine geometry In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study ...
, the study of
rational point In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the fiel ...
s of
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
. In more abstract terms, arithmetic geometry can be defined as the study of schemes of finite type over the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of the ring of integers.


Overview

The classical objects of interest in arithmetic geometry are rational points: sets of solutions of a
system of polynomial equations A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations where the are polynomials in several variables, say , over some field . A ''solution'' of a polynomial system is a set of values for the ...
over
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
s,
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
s,
p-adic field In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extensio ...
s, or function fields, i.e.
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
s that are not
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
excluding the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s. Rational points can be directly characterized by
height function A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algeb ...
s which measure their arithmetic complexity. The structure of algebraic varieties defined over non-algebraically closed fields has become a central area of interest that arose with the modern abstract development of algebraic geometry. Over finite fields,
étale cohomology In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectur ...
provides
topological invariant In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
s associated to algebraic varieties.
p-adic Hodge theory In mathematics, ''p''-adic Hodge theory is a theory that provides a way to classify and study ''p''-adic Galois representations of characteristic 0 local fields with residual characteristic ''p'' (such as Q''p''). The theory has its beginnings i ...
gives tools to examine when cohomological properties of varieties over the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s extend to those over
p-adic field In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extensio ...
s.


History


19th century: early arithmetic geometry

In the early 19th century,
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
observed that non-zero
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
solutions to
homogeneous polynomial In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables; ...
equations with
rational Rationality is the quality of being guided by or based on reasons. In this regard, a person acts rationally if they have a good reason for what they do or a belief is rational if it is based on strong evidence. This quality can apply to an abi ...
coefficients exist if non-zero rational solutions exist. In the 1850s,
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, ...
formulated the
Kronecker–Weber theorem In algebraic number theory, it can be shown that every cyclotomic field is an abelian extension of the rational number field Q, having Galois group of the form (\mathbb Z/n\mathbb Z)^\times. The Kronecker–Weber theorem provides a partial conve ...
, introduced the theory of
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
s, and made numerous other connections between number theory and
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
. He then conjectured his " liebster Jugendtraum" ("dearest dream of youth"), a generalization that was later put forward by Hilbert in a modified form as his twelfth problem, which outlines a goal to have number theory operate only with rings that are quotients of
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
s over the integers.


Early-to-mid 20th century: algebraic developments and the Weil conjectures

In the late 1920s, André Weil demonstrated profound connections between algebraic geometry and number theory with his doctoral work leading to the Mordell–Weil theorem which demonstrates that the set of rational points of an abelian variety is a
finitely generated abelian group In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n ...
. Modern foundations of algebraic geometry were developed based on contemporary
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prom ...
, including
valuation theory In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size i ...
and the theory of ideals by
Oscar Zariski , birth_date = , birth_place = Kobrin, Russian Empire , death_date = , death_place = Brookline, Massachusetts, United States , nationality = American , field = Mathematics , work_institutions = ...
and others in the 1930s and 1940s. In 1949, André Weil posed the landmark
Weil conjectures In mathematics, the Weil conjectures were highly influential proposals by . They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory. Th ...
about the
local zeta-function In number theory, the local zeta function (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as :Z(V, s) = \exp\left(\sum_^\infty \frac (q^)^m\right) where is a non-singular -dimensional projective alg ...
s of algebraic varieties over finite fields. These conjectures offered a framework between algebraic geometry and number theory that propelled Alexander Grothendieck to recast the foundations making use of
sheaf theory In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
(together with
Jean-Pierre Serre Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the ina ...
), and later scheme theory, in the 1950s and 1960s.
Bernard Dwork Bernard Morris Dwork (May 27, 1923 – May 9, 1998) was an American mathematician, known for his application of ''p''-adic analysis to local zeta functions, and in particular for a proof of the first part of the Weil conjectures: the rationality ...
proved one of the four Weil conjectures (rationality of the local zeta function) in 1960. Grothendieck developed étale cohomology theory to prove two of the Weil conjectures (together with
Michael Artin Michael Artin (; born 28 June 1934) is a German-American mathematician and a professor emeritus in the Massachusetts Institute of Technology mathematics department, known for his contributions to algebraic geometry.Jean-Louis Verdier) by 1965. The last of the Weil conjectures (an analogue of the Riemann hypothesis) would be finally proven in 1974 by
Pierre Deligne Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord P ...
.


Mid-to-late 20th century: developments in modularity, p-adic methods, and beyond

Between 1956 and 1957,
Yutaka Taniyama was a Japanese mathematician known for the Taniyama–Shimura conjecture. Contribution Taniyama was best known for conjecturing, in modern language, automorphic properties of L-functions of elliptic curves over any number field. A partial and r ...
and
Goro Shimura was a Japanese mathematician and Michael Henry Strater Professor Emeritus of Mathematics at Princeton University who worked in number theory, automorphic forms, and arithmetic geometry. He was known for developing the theory of complex multipli ...
posed the Taniyama–Shimura conjecture (now known as the modularity theorem) relating
elliptic curves In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If t ...
to
modular forms In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of ...
. This connection would ultimately lead to the first proof of
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been ...
in number theory through algebraic geometry techniques of modularity lifting developed by
Andrew Wiles Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specializing in number theory. He is best known for proving Fermat's Last Theorem, for which he was awa ...
in 1995. In the 1960s, Goro Shimura introduced
Shimura varieties In number theory, a Shimura variety is a higher-dimensional analogue of a modular curve that arises as a quotient variety of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic group defined over Q. Shimura varieties are no ...
as generalizations of
modular curve In number theory and algebraic geometry, a modular curve ''Y''(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular ...
s. Since the 1979, Shimura varieties have played a crucial role in the
Langlands program In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic num ...
as a natural realm of examples for testing conjectures. In papers in 1977 and 1978, Barry Mazur proved the
torsion conjecture In algebraic geometry and number theory, the torsion conjecture or uniform boundedness conjecture for torsion points for abelian varieties states that the order of the torsion group of an abelian variety over a number field can be bounded in ter ...
giving a complete list of the possible torsion subgroups of elliptic curves over the rational numbers. Mazur's first proof of this theorem depended upon a complete analysis of the rational points on certain
modular curve In number theory and algebraic geometry, a modular curve ''Y''(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular ...
s. In 1996, the proof of the torsion conjecture was extended to all number fields by
Loïc Merel Loïc Merel (born 13 August 1965) is a French mathematician. His research interests include modular forms and number theory. Career Born in Carhaix-Plouguer, Brittany, Merel became a student at the École Normale Supérieure. He finished his doc ...
. In 1983,
Gerd Faltings Gerd Faltings (; born 28 July 1954) is a German mathematician known for his work in arithmetic geometry. Education From 1972 to 1978, Faltings studied mathematics and physics at the University of Münster. In 1978 he received his PhD in mathema ...
proved the
Mordell conjecture Louis Joel Mordell (28 January 1888 – 12 March 1972) was an American-born British mathematician, known for pioneering research in number theory. He was born in Philadelphia, United States, in a Jewish family of Lithuanian extraction. Educati ...
, demonstrating that a curve of genus greater than 1 has only finitely many rational points (where the Mordell–Weil theorem only demonstrates finite generation of the set of rational points as opposed to finiteness). In 2001, the proof of the local Langlands conjectures for GLn was based on the geometry of certain Shimura varieties. In the 2010s,
Peter Scholze Peter Scholze (; born 11 December 1987) is a German mathematician known for his work in arithmetic geometry. He has been a professor at the University of Bonn since 2012 and director at the Max Planck Institute for Mathematics since 2018. He ha ...
developed perfectoid spaces and new cohomology theories in arithmetic geometry over p-adic fields with application to Galois representations and certain cases of the weight-monodromy conjecture.


See also

*
Arithmetic dynamics Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Classically, discrete dynamics refers to the study of the iteration of self-maps of the complex plane or real line. Arithmetic dynamics is ...
*
Arithmetic of abelian varieties In mathematics, the arithmetic of abelian varieties is the study of the number theory of an abelian variety, or a family of abelian varieties. It goes back to the studies of Pierre de Fermat on what are now recognized as elliptic curves; and has b ...
*
Birch and Swinnerton-Dyer conjecture In mathematics, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory an ...
*
Moduli of algebraic curves In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending ...
*
Siegel modular variety In mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally pola ...
*
Siegel's theorem on integral points In mathematics, Siegel's theorem on integral points states that for a smooth algebraic curve ''C'' of genus ''g'' defined over a number field ''K'', presented in affine space in a given coordinate system, there are only finitely many points on ''C ...
* Category theory *
Frobenioid In arithmetic geometry, a Frobenioid is a category with some extra structure that generalizes the theory of line bundles on models of finite extensions of global fields. Frobenioids were introduced by . The word "Frobenioid" is a portmanteau of Fro ...


References

{{DEFAULTSORT:Arithmetic Geometry Fields of mathematics