Gallium-arsenide
   HOME

TheInfoList



OR:

Gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
arsenide In chemistry, an arsenide is a compound of arsenic with a less electronegative element or elements. Many metals form binary compounds containing arsenic, and these are called arsenides. They exist with many Stoichiometry, stoichiometries, and in t ...
(GaAs) is a
III-V Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way. Because of ...
direct band gap In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a ...
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
with a
zinc blende Sphalerite is a sulfide mineral with the chemical formula . It is the most important ore of zinc. Sphalerite is found in a variety of deposit types, but it is primarily in sedimentary exhalative, Mississippi-Valley type, and volcanogenic mas ...
crystal structure. Gallium arsenide is used in the manufacture of devices such as
microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
frequency
integrated circuit An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s,
monolithic microwave integrated circuit Monolithic microwave integrated circuit, or MMIC (sometimes pronounced "mimic"), is a type of integrated circuit (IC) device that operates at microwave frequencies (300 MHz to 300 GHz). These devices typically perform functions such as ...
s,
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corre ...
s,
laser diode file:Laser diode chip.jpg, The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD or semiconductor laser or diode laser) is a semiconductor device similar to a light-emittin ...
s,
solar cells A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
and optical windows. GaAs is often used as a substrate material for the epitaxial growth of other III-V semiconductors, including
indium gallium arsenide Indium gallium arsenide (InGaAs) (alternatively gallium indium arsenide, GaInAs) is a ternary alloy (chemical compound) of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are Group 13 element, group III elements of the peri ...
,
aluminum gallium arsenide Aluminium gallium arsenide (also gallium aluminium arsenide) ( Alx Ga1−x As) is a semiconductor material with very nearly the same lattice constant as GaAs, but a larger bandgap. The ''x'' in the formula above is a number between 0 and 1 - this ...
and others.


History

Gallium arsenide was first synthesized and studied by
Victor Goldschmidt Victor Moritz Goldschmidt (27 January 1888 – 20 March 1947) was a Norwegian mineralogist considered (together with Vladimir Vernadsky) to be the founder of modern geochemistry and crystal chemistry, developer of the Goldschmidt Classificatio ...
in 1926 by passing arsenic vapors mixed with hydrogen over
gallium(III) oxide Gallium(III) oxide is an inorganic compound and Wide-bandgap semiconductor, ultra-wide-bandgap semiconductor with the formula Gallium, Ga2trioxide, O3. It is actively studied for applications in power electronics, phosphors, and Gas detector, gas ...
at 600 °C. The semiconductor properties of GaAs and other
III-V compounds Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way. Because of ...
were patented by
Heinrich Welker Heinrich Johann Welker (9 September 1912 in Ingolstadt – 25 December 1981 in Erlangen) was a German theoretical and applied physicist who invented the " transistron", a transistor made at Westinghouse independently of the first successful transi ...
at
Siemens-Schuckert Siemens-Schuckert (or Siemens-Schuckertwerke) was a German electrical engineering company headquartered in Berlin, Erlangen and Nuremberg that was incorporated into the Siemens AG in 1966. Siemens Schuckert was founded in 1903 when Siemens & H ...
in 1951 and described in a 1952 publication. Commercial production of its monocrystals commenced in 1954, and more studies followed in the 1950s. First infrared LEDs were made in 1962.


Preparation and chemistry

In the compound, gallium has a +3
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
. Gallium arsenide
single crystal In materials science, a single crystal (or single-crystal solid or monocrystalline solid) is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no Grain boundary, grain bound ...
s can be prepared by three industrial processes: * The vertical gradient freeze (VGF) process. * Crystal growth using a horizontal zone furnace in the Bridgman-Stockbarger technique, in which gallium and arsenic vapors react, and free molecules deposit on a seed crystal at the cooler end of the furnace. * Liquid encapsulated Czochralski (LEC) growth is used for producing high-purity single crystals that can exhibit semi-insulating characteristics (see below). Most GaAs wafers are produced using this process. Alternative methods for producing films of GaAs include: * VPE reaction of gaseous gallium metal and
arsenic trichloride Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of o ...
: 2 Ga + 2 → 2 GaAs + 3 *
MOCVD Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. ...
reaction of
trimethylgallium Trimethylgallium, often abbreviated to TMG or TMGa, is the organogallium compound with the formula Ga(CH3)3. It is a colorless, pyrophoric liquid. Unlike trimethylaluminium, TMG adopts a monomeric structure. When examined in detail, the monome ...
and
arsine Arsine (IUPAC name: arsane) is an inorganic compound with the formula As H3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications in th ...
: + → GaAs + 3 *
Molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
(MBE) of
gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
and
arsenic Arsenic is a chemical element; it has Symbol (chemistry), symbol As and atomic number 33. It is a metalloid and one of the pnictogens, and therefore shares many properties with its group 15 neighbors phosphorus and antimony. Arsenic is not ...
: 4 Ga + → 4 GaAs or 2 Ga + → 2 GaAs Oxidation of GaAs occurs in air, degrading performance of the semiconductor. The surface can be passivated by depositing a cubic gallium(II) sulfide layer using a tert-butyl gallium sulfide compound such as (.


Semi-insulating crystals

In the presence of excess arsenic, GaAs
boules Boules (, ), or ''jeu de boules'', is a collective name for a wide range of games similar to bowls and bocce in which the objective is to throw or roll heavy balls as closely as possible to a small target ball, called the ''jack''. 'Boules' its ...
grow with
crystallographic defect A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in Crystal, crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the Crysta ...
s; specifically, arsenic antisite defects (an arsenic atom at a gallium atom site within the crystal lattice). The electronic properties of these defects (interacting with others) cause the
Fermi level The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by ''μ'' or ''E''F for brevity. The Fermi level does not include the work required to re ...
to be pinned to near the center of the band gap, so that this GaAs crystal has very low concentration of electrons and holes. This low carrier concentration is similar to an intrinsic (perfectly undoped) crystal, but much easier to achieve in practice. These crystals are called "semi-insulating", reflecting their high resistivity of 107–109 Ω·cm (which is quite high for a semiconductor, but still much lower than a true insulator like glass).McCluskey, Matthew D. and Haller, Eugene E. (2012) ''Dopants and Defects in Semiconductors'', pp. 41 and 66,


Etching

Wet etching of GaAs industrially uses an oxidizing agent such as
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
or
bromine Bromine is a chemical element; it has chemical symbol, symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between th ...
water, and the same strategy has been described in a patent relating to processing scrap components containing GaAs where the is complexed with a
hydroxamic acid In organic chemistry, hydroxamic acids are a class of organic compounds having a general formula bearing the functional group , where R and R' are typically organyl groups (e.g., alkyl or aryl) or hydrogen. They are amides () wherein the nitroge ...
("HA"), for example: :GaAs + + "HA" → "GaA" complex + + 4 This reaction produces
arsenic acid Arsenic acid or arsoric acid is the chemical compound with the chemical formula, formula . More descriptively written as , this colorless acid is the arsenic analogue of phosphoric acid. Arsenate and phosphate salts behave very similarly. Arsenic ...
.


Electronics


GaAs digital logic

GaAs can be used for various transistor types: 'Clear search' to see pages * Metal–semiconductor field-effect transistor (MESFET) *
High-electron-mobility transistor A high-electron-mobility transistor (HEMT or HEM FET), also known as heterostructure FET (HFET) or modulation-doped FET (MODFET), is a field-effect transistor incorporating a junction between two materials with different band gaps (i.e. a heter ...
(HEMT) *
Junction field-effect transistor The junction field-effect transistor (JFET) is one of the simplest types of field-effect transistor. JFETs are three-terminal semiconductor devices that can be used as electronically controlled switches or resistors, or to build amplifiers. Un ...
(JFET) *
Heterojunction bipolar transistor A heterojunction bipolar transistor (HBT) is a type of bipolar junction transistor (BJT) that uses different semiconductor materials for the emitter and base regions, creating a heterojunction. The HBT improves on the BJT in that it can handle si ...
(HBT) *
Metal–oxide–semiconductor field-effect transistor upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale. In electronics, the metal–oxide–semiconductor field- ...
(MOSFET) The HBT can be used in
integrated injection logic Integrated injection logic (IIL, I2L, or I2L) is a class of digital circuits built with multiple collector bipolar junction transistors (BJT). When introduced it had speed comparable to TTL yet was almost as low power as CMOS, making it ideal for ...
(I2L). The earliest GaAs logic gate used Buffered FET Logic (BFL). From to 1995 the main logic families used were: * Source-coupled FET logic (SCFL) fastest and most complex, (used by TriQuint & Vitesse) * Capacitor–diode FET logic (CDFL) (used by Cray for
Cray-3 The Cray-3 was a Vector processor, vector supercomputer, Seymour Cray's designated successor to the Cray-2. The system was one of the first major applications of gallium arsenide (GaAs) semiconductors in computing, using hundreds of custom built ...
) * Direct-coupled FET logic (DCFL) simplest and lowest power (used by Vitesse for VLSI gate arrays)


Comparison with silicon for electronics


GaAs advantages

Some electronic properties of gallium arsenide are superior to those of
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
. It has a higher saturated electron velocity and higher
electron mobility In solid-state physics, the electron mobility characterizes how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for Electron hole, holes, called hole mobilit ...
, allowing gallium arsenide transistors to function at frequencies in excess of 250 GHz. GaAs devices are relatively insensitive to overheating, owing to their wider energy band gap, and they also tend to create less
noise Noise is sound, chiefly unwanted, unintentional, or harmful sound considered unpleasant, loud, or disruptive to mental or hearing faculties. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrat ...
(disturbance in an electrical signal) in electronic circuits than silicon devices, especially at high frequencies. This is a result of higher carrier mobilities and lower resistive device parasitics. These superior properties are compelling reasons to use GaAs circuitry in
mobile phone A mobile phone or cell phone is a portable telephone that allows users to make and receive calls over a radio frequency link while moving within a designated telephone service area, unlike fixed-location phones ( landline phones). This rad ...
s,
satellite A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
communications, microwave point-to-point links and higher frequency
radar Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
systems. It is also used in the manufacture of
Gunn diode A Gunn diode, also known as a transferred electron device (TED), is a form of diode, a two-terminal semiconductor electronic component, with negative differential resistance, used in high-frequency electronics. It is based on the "Gunn effect" d ...
s for the generation of
microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
s. Another advantage of GaAs is that it has a
direct band gap In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a ...
, which means that it can be used to absorb and emit light efficiently. Silicon has an
indirect band gap In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by ...
and so is relatively poor at emitting light. As a wide direct band gap material with resulting resistance to radiation damage, GaAs is an excellent material for outer space electronics and optical windows in high power applications. Because of its wide band gap, pure GaAs is highly resistive. Combined with a high
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insul ...
, this property makes GaAs a very good substrate for
integrated circuit An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s and unlike Si provides natural isolation between devices and circuits. This has made it an ideal material for
monolithic microwave integrated circuit Monolithic microwave integrated circuit, or MMIC (sometimes pronounced "mimic"), is a type of integrated circuit (IC) device that operates at microwave frequencies (300 MHz to 300 GHz). These devices typically perform functions such as ...
s (MMICs), where active and essential passive components can readily be produced on a single slice of GaAs. One of the first GaAs
microprocessor A microprocessor is a computer processor (computing), processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, a ...
s was developed in the early 1980s by the
RCA RCA Corporation was a major American electronics company, which was founded in 1919 as the Radio Corporation of America. It was initially a patent pool, patent trust owned by General Electric (GE), Westinghouse Electric Corporation, Westinghou ...
Corporation and was considered for the Star Wars program of the
United States Department of Defense The United States Department of Defense (DoD, USDOD, or DOD) is an United States federal executive departments, executive department of the federal government of the United States, U.S. federal government charged with coordinating and superv ...
. These processors were several times faster and several orders of magnitude more radiation resistant than their silicon counterparts, but were more expensive. Other GaAs processors were implemented by the
supercomputer A supercomputer is a type of computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instruc ...
vendors
Cray Cray Inc., a subsidiary of Hewlett Packard Enterprise, is an American supercomputer manufacturer headquartered in Seattle, Washington. It also manufactures systems for data storage and analytics. Several Cray supercomputer systems are listed ...
Computer Corporation,
Convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
, and Alliant in an attempt to stay ahead of the ever-improving
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss ", , ) is a type of MOSFET, metal–oxide–semiconductor field-effect transistor (MOSFET) semiconductor device fabrication, fabrication process that uses complementary an ...
microprocessor. Cray eventually built one GaAs-based machine in the early 1990s, the
Cray-3 The Cray-3 was a Vector processor, vector supercomputer, Seymour Cray's designated successor to the Cray-2. The system was one of the first major applications of gallium arsenide (GaAs) semiconductors in computing, using hundreds of custom built ...
, but the effort was not adequately capitalized, and the company filed for bankruptcy in 1995. Complex layered structures of gallium arsenide in combination with
aluminium arsenide Aluminium arsenide () is a semiconductor material with almost the same lattice constant as gallium arsenide and aluminium gallium arsenide and wider band gap than gallium arsenide. (AlAs) can form a superlattice with gallium arsenide ( GaAs) which ...
(AlAs) or the alloy AlxGa1−xAs can be grown using
molecular-beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
(MBE) or using metalorganic vapor-phase epitaxy (MOVPE). Because GaAs and AlAs have almost the same
lattice constant A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal. A simple cubic crystal has ...
, the layers have very little induced strain, which allows them to be grown almost arbitrarily thick. This allows extremely high performance and high electron mobility HEMT transistors and other
quantum well A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occup ...
devices. GaAs is used for monolithic radar power amplifiers (but
GaN The word Gan or the initials GAN may refer to: Places * Gan, a component of Hebrew placenames literally meaning "garden" China * Gan River (Jiangxi) * Gan River (Inner Mongolia), * Gan County, in Jiangxi province * Gansu, abbreviated '' ...
can be less susceptible to heat damage).


Silicon advantages

Silicon has three major advantages over GaAs for integrated circuit manufacture. First, silicon is abundant and cheap to process in the form of
silicate A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used ...
minerals. The
economies of scale In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, and are typically measured by the amount of Productivity, output produced per unit of cost (production cost). A decrease in ...
available to the silicon industry has also hindered the adoption of GaAs. In addition, a Si crystal has a very stable structure and can be grown to very large diameter boules and processed with very good yields. It is also a fairly good thermal conductor, thus enabling very dense packing of transistors that need to get rid of their heat of operation, all very desirable for design and manufacturing of very large ICs. Such good mechanical characteristics also make it a suitable material for the rapidly developing field of
nanoelectronics Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical ...
. Naturally, a GaAs surface cannot withstand the high temperatures needed for diffusion; however a viable and actively pursued alternative as of the 1980s was ion implantation. The second major advantage of Si is the existence of a native oxide (
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundan ...
, SiO2), which is used as an insulator. Silicon dioxide can be incorporated onto silicon circuits easily, and such layers are adherent to the underlying silicon. SiO2 is not only a good insulator (with a
band gap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
of 8.9 eV), but the Si-SiO2 interface can be easily engineered to have excellent electrical properties, most importantly low density of interface states. GaAs does not have a native oxide, does not easily support a stable adherent insulating layer, and does not possess the dielectric strength or surface passivating qualities of the Si-SiO2.
Aluminum oxide Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
(Al2O3) has been extensively studied as a possible gate oxide for GaAs (as well as
InGaAs Indium gallium arsenide (InGaAs) (alternatively gallium indium arsenide, GaInAs) is a ternary alloy (chemical compound) of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are group III elements of the periodic table while ...
). The third advantage of silicon is that it possesses a higher
hole A hole is an opening in or through a particular medium, usually a solid Body (physics), body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in m ...
mobility compared to GaAs (500 versus 400 cm2V−1s−1). This high mobility allows the fabrication of higher-speed P-channel
field-effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the current through a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three termi ...
s, which are required for
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss ", , ) is a type of MOSFET, metal–oxide–semiconductor field-effect transistor (MOSFET) semiconductor device fabrication, fabrication process that uses complementary an ...
logic. Because they lack a fast CMOS structure, GaAs circuits must use logic styles which have much higher power consumption; this has made GaAs logic circuits unable to compete with silicon logic circuits. For manufacturing solar cells, silicon has relatively low absorptivity for sunlight, meaning about 100 micrometers of Si is needed to absorb most sunlight. Such a layer is relatively robust and easy to handle. In contrast, the absorptivity of GaAs is so high that only a few micrometers of thickness are needed to absorb all of the light. Consequently, GaAs thin films must be supported on a substrate material.Single-Crystalline Thin Film
US Department of Energy
Silicon is a pure element, avoiding the problems of stoichiometric imbalance and thermal unmixing of GaAs. Silicon has a nearly perfect lattice; impurity density is very low and allows very small structures to be built (down to 5 nm in commercial production as of 2020). In contrast, GaAs has a very high impurity density, which makes it difficult to build integrated circuits with small structures, so the 500 nm process is a common process for GaAs. Silicon has about three times the thermal conductivity of GaAs, with less risk of local overheating in high power devices.


Other applications


Transistor uses

Gallium arsenide (GaAs) transistors are used in the RF power amplifiers for cell phones and wireless communicating. GaAs wafers are used in
laser diodes The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD or semiconductor laser or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode p ...
,
photodetectors Photodetectors, also called photosensors, are devices that detect light or other forms of electromagnetic radiation and convert it into an electrical signal. They are essential in a wide range of applications, from digital imaging and optical c ...
, and radio frequency (RF) amplifiers for mobile phones and base stations. GaAs transistors are also integral to monolithic microwave integrated circuits (MMICs), utilized in satellite communication and radar systems, as well as in low-noise amplifiers (LNAs) that enhance weak signals.


Solar cells and detectors

Gallium arsenide is an important semiconductor material for high-cost, high-efficiency
solar cell A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
s and is used for single-crystalline
thin-film solar cell Thin-film solar cells are a type of solar cell made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nan ...
s and for multi-junction solar cells. The first known operational use of GaAs solar cells in space was for the
Venera 3 Venera 3 ( meaning ''Venus 3'') was a Venera program space probe that was built and launched by the Soviet Union to explore the surface of Venus. It was launched on 16 November 1965 at 04:19 UTC from Baikonur, Kazakhstan, USSR. The probe comp ...
mission, launched in 1965. The GaAs solar cells, manufactured by Kvant, were chosen because of their higher performance in high temperature environments. GaAs cells were then used for the Lunokhod rovers for the same reason. In 1970, the GaAs heterostructure solar cells were developed by the team led by
Zhores Alferov Zhores Ivanovich Alferov ( rus, Жоре́с Ива́нович Алфёров, , ʐɐˈrɛs ɨˈvanəvʲɪtɕ ɐlˈfʲɵrəf}; ; 15 March 19301 March 2019) was a Soviet and Russian physicist and academic who contributed significantly to the cr ...
in the
USSR The Union of Soviet Socialist Republics. (USSR), commonly known as the Soviet Union, was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 until Dissolution of the Soviet ...
, achieving much higher efficiencies. In the early 1980s, the efficiency of the best GaAs solar cells surpassed that of conventional,
crystalline silicon Crystalline silicon or (c-Si) is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semicon ...
-based solar cells. In the 1990s, GaAs solar cells took over from silicon as the cell type most commonly used for
photovoltaic array A photovoltaic system, also called a PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to abso ...
s for satellite applications. Later, dual- and triple-junction solar cells based on GaAs with
germanium Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
and
indium gallium phosphide Indium gallium phosphide (InGaP), also called gallium indium phosphide (GaInP), is a semiconductor composed of indium, gallium and phosphorus. It is used in high-power and high-frequency electronics because of its superior electron velocity with ...
layers were developed as the basis of a triple-junction solar cell, which held a record efficiency of over 32% and can operate also with light as concentrated as 2,000 suns. This kind of solar cell powered the
Mars Exploration Rover NASA's Mars Exploration Rover (MER) mission was a robotic space mission involving two Mars rovers, ''Spirit (rover), Spirit'' and ''Opportunity (rover), Opportunity'', exploring the planet Mars. It began in 2003 with the launch of the two rove ...
s Spirit and
Opportunity Opportunity may refer to: Places * Opportunity, Montana, an unincorporated community, United States * Opportunity, Nebraska, an unincorporated community, United States * Opportunity, Washington, a former census-designated place, United States * ...
, which explored
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
' surface. Also many
solar car A solar car is a solar vehicle for use on public roads or race tracks. Solar vehicles are electric vehicles that use self-contained solar cells to provide full or partial power to the vehicle via sunlight. Solar vehicles typically contain a recha ...
s utilize GaAs in solar arrays, as did the Hubble Telescope. GaAs-based devices hold the world record for the highest-efficiency single-junction solar cell at 29.1% (as of 2019). This high efficiency is attributed to the extreme high quality GaAs epitaxial growth, surface passivation by the AlGaAs, and the promotion of photon recycling by the thin film design. GaAs-based
photovoltaics Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commerciall ...
are also responsible for the highest efficiency (as of 2022) of conversion of light to electricity, as researchers from the
Fraunhofer Institute for Solar Energy Systems The Fraunhofer Institute for Solar Energy Systems ISE (or Fraunhofer ISE) is an institute of the Fraunhofer-Gesellschaft. Located in Freiburg, Germany, the Institute performs applied scientific and engineering research and development for all a ...
achieved a 68.9% efficiency when exposing a GaAs
thin film A thin film is a layer of materials ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
photovoltaic cell to monochromatic laser light with a wavelength of 858 nanometers. Today, multi-junction GaAs cells have the highest efficiencies of existing photovoltaic cells and trajectories show that this is likely to continue to be the case for the foreseeable future. In 2022,
Rocket Lab Rocket Lab Corporation is a Public company, publicly traded aerospace manufacturer and List of launch service providers, launch service provider. Its Rocket Lab Electron, Electron orbital rocket launches Small satellite, small satellites, and ha ...
unveiled a solar cell with 33.3% efficiency based on inverted metamorphic multi-junction (IMM) technology. In IMM, the lattice-matched (same lattice parameters) materials are grown first, followed by mismatched materials. The top cell, GaInP, is grown first and lattice matched to the GaAs substrate, followed by a layer of either GaAs or GaInAs with a minimal mismatch, and the last layer has the greatest lattice mismatch. After growth, the cell is mounted to a secondary handle and the GaAs substrate is removed. A main advantage of the IMM process is that the inverted growth according to lattice mismatch allows a path to higher cell efficiency. Complex designs of AlxGa1−xAs-GaAs devices using
quantum well A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occup ...
s can be sensitive to infrared radiation (
QWIP A Quantum Well Infrared Photodetector (QWIP) is an infrared photodetector, which uses electronic intersubband transitions in quantum wells to absorb photons. In order to be used for infrared detection, the parameters of the quantum wells in the quan ...
). GaAs diodes can be used for the detection of X-rays.


Future outlook of GaAs solar cells

Despite GaAs-based photovoltaics being the clear champions of efficiency for solar cells, they have relatively limited use in today's market. In both world electricity generation and world electricity generating capacity, solar electricity is growing faster than any other source of fuel (wind, hydro, biomass, and so on) for the last decade. However, GaAs solar cells have not currently been adopted for widespread solar electricity generation. This is largely due to the cost of GaAs solar cells - in space applications, high performance is required and the corresponding high cost of the existing GaAs technologies is accepted. For example, GaAs-based photovoltaics show the best resistance to gamma radiation and high temperature fluctuations, which are of great importance for spacecraft. But in comparison to other solar cells, III-V solar cells are two to three orders of magnitude more expensive than other technologies such as silicon-based solar cells. The primary sources of this cost are the
epitaxial growth Epitaxy (prefix ''epi-'' means "on top of”) is a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited cry ...
costs and the substrate the cell is deposited on. GaAs solar cells are most commonly fabricated utilizing epitaxial growth techniques such as metal-organic chemical vapor deposition (MOCVD) and hydride vapor phase epitaxy (HVPE). A significant reduction in costs for these methods would require improvements in tool costs, throughput, material costs, and manufacturing efficiency. Increasing the deposition rate could reduce costs, but this cost reduction would be limited by the fixed times in other parts of the process such as cooling and heating. The substrate used to grow these solar cells is usually germanium or gallium arsenide which are notably expensive materials. One of the main pathways to reduce substrate costs is to reuse the substrate. An early method proposed to accomplish this is epitaxial lift-off (ELO), but this method is time-consuming, somewhat dangerous (with its use of
hydrofluoric acid Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colorless, acidic and highly corrosive. A common concentration is 49% (48–52%) but there are also stronger solutions (e.g. 70%) and pure HF has a boiling p ...
), and requires multiple post-processing steps. However, other methods have been proposed that use phosphide-based materials and hydrochloric acid to achieve ELO with
surface passivation A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
and minimal post-
etching Etching is traditionally the process of using strong acid or mordant to cut into the unprotected parts of a metal surface to create a design in intaglio (incised) in the metal. In modern manufacturing, other chemicals may be used on other type ...
residues and allows for direct reuse of the GaAs substrate. There is also preliminary evidence that
spalling Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure (as in a ball ...
could be used to remove the substrate for reuse. An alternative path to reduce substrate cost is to use cheaper materials, although materials for this application are not currently commercially available or developed. Yet another consideration to lower GaAs solar cell costs could be
concentrator photovoltaics Concentrator photovoltaics (CPV) (also known as concentrating photovoltaics or concentration photovoltaics) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or cur ...
. Concentrators use lenses or parabolic mirrors to focus light onto a solar cell, and thus a smaller (and therefore less expensive) GaAs solar cell is needed to achieve the same results. Concentrator systems have the highest efficiency of existing photovoltaics. So, technologies such as concentrator photovoltaics and methods in development to lower epitaxial growth and substrate costs could lead to a reduction in the cost of GaAs solar cells and forge a path for use in terrestrial applications.


Light-emission devices

GaAs has been used to produce near-infrared laser diodes since 1962. It is often used in alloys with other semiconductor compounds for these applications. ''N''-type GaAs doped with silicon donor atoms (on Ga sites) and boron acceptor atoms (on As sites) responds to ionizing radiation by emitting scintillation photons. At cryogenic temperatures it is among the brightest scintillators known and is a promising candidate for detecting rare electronic excitations from interacting dark matter, due to the following six essential factors: # Silicon donor electrons in GaAs have a binding energy that is among the lowest of all known ''n''-type semiconductors. Free electrons above per cm3 are not “frozen out" and remain delocalized at cryogenic temperatures. # Boron and gallium are group III elements, so boron as an impurity primarily occupies the gallium site. However, a sufficient number occupy the arsenic site and act as acceptors that efficiently trap ionization event holes from the valence band. # After trapping an ionization event hole from the valence band, the boron acceptors can combine radiatively with delocalized donor electrons to produce photons 0.2 eV below the cryogenic band-gap energy (1.52 eV). This is an efficient radiative process that produces scintillation photons that are not absorbed by the GaAs crystal. # There is no afterglow, because metastable radiative centers are quickly annihilated by the delocalized electrons. This is evidenced by the lack of thermally induced luminescence. # ''N''-type GaAs has a high refractive index (~3.5) and the narrow-beam absorption coefficient is proportional to the free electron density and typically several per cm. One would expect that almost all of the scintillation photons should be trapped and absorbed in the crystal, but this is not the case. Recent Monte Carlo and Feynman path integral calculations have shown that the high luminosity could be explained if most of the narrow beam absorption is not absolute absorption but a ''novel'' type of optical scattering from the conduction electrons with a cross section of about 5 x 10−18 cm2 that allows scintillation photons to escape total internal reflection. This cross section is about 107 times larger than Thomson scattering but comparable to the optical cross section of the conduction electrons in a metal mirror. # ''N''-type GaAs(Si,B) is commercially grown as 10 kg crystal ingots and sliced into thin wafers as substrates for electronic circuits. Boron oxide is used as an encapsulant to prevent the loss of arsenic during crystal growth, but also has the benefit of providing boron acceptors for scintillation.


Fiber optic temperature measurement

For this purpose an optical fiber tip of an optical fiber temperature sensor is equipped with a gallium arsenide crystal. Starting at a light wavelength of 850 nm GaAs becomes optically translucent. Since the spectral position of the band gap is temperature dependent, it shifts about 0.4 nm/K. The measurement device contains a light source and a device for the spectral detection of the band gap. With the changing of the band gap, (0.4 nm/K) an algorithm calculates the temperature (all 250 ms).A New Fiber Optical Thermometer and Its Application for Process Control in Strong Electric, Magnetic, and Electromagnetic Fields
. optocon.de (PDF; 2,5 MB)


Spin-charge converters

GaAs may have applications in
spintronics Spintronics (a portmanteau meaning spin transport electronics), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-st ...
as it can be used instead of
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
in spin-charge converters and may be more tunable.


Safety

The environment, health and safety aspects of gallium arsenide sources (such as
trimethylgallium Trimethylgallium, often abbreviated to TMG or TMGa, is the organogallium compound with the formula Ga(CH3)3. It is a colorless, pyrophoric liquid. Unlike trimethylaluminium, TMG adopts a monomeric structure. When examined in detail, the monome ...
and
arsine Arsine (IUPAC name: arsane) is an inorganic compound with the formula As H3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications in th ...
) and industrial hygiene monitoring studies of
metalorganic Metal-organic compounds (jargon: metalorganics, metallo-organics) are a class of chemical compounds that contain metals and organic ligands, but lacking direct metal-carbon bonds. Metal β-diketonates, metal alkoxides, metal dialkylamides, transi ...
precursors have been reported. California lists gallium arsenide as a
carcinogen A carcinogen () is any agent that promotes the development of cancer. Carcinogens can include synthetic chemicals, naturally occurring substances, physical agents such as ionizing and non-ionizing radiation, and biologic agents such as viruse ...
, as do
IARC IARC may refer to: * International Aerial Robotics Competition * International Age Rating Coalition * International Agency for Research on Cancer * International Arctic Research Center * Israel Association of Radio Communication * iArc, South Ko ...
and ECA, and it is considered a known carcinogen in animals. On the other hand, a 2013 review (funded by industry) argued against these classifications, saying that when rats or mice inhale fine GaAs powders (as in previous studies), they get cancer from the resulting lung irritation and inflammation, rather than from a primary carcinogenic effect of the GaAs itself—and that, moreover, fine GaAs powders are unlikely to be created in the production or use of GaAs.


See also

*
Aluminium arsenide Aluminium arsenide () is a semiconductor material with almost the same lattice constant as gallium arsenide and aluminium gallium arsenide and wider band gap than gallium arsenide. (AlAs) can form a superlattice with gallium arsenide ( GaAs) which ...
*
Aluminium gallium arsenide Aluminium gallium arsenide (also gallium aluminium arsenide) ( Alx Ga1−x As) is a semiconductor material with very nearly the same lattice constant as GaAs, but a larger bandgap. The ''x'' in the formula above is a number between 0 and 1 - thi ...
*
Arsine Arsine (IUPAC name: arsane) is an inorganic compound with the formula As H3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications in th ...
*
Cadmium telluride Cadmium telluride (CdTe) is a stable crystalline compound formed from cadmium and tellurium. It is mainly used as the semiconducting material in cadmium telluride photovoltaics and an infrared optical window. It is usually sandwiched with ...
*
Gallium antimonide Gallium antimonide (GaSb) is a semiconducting compound of gallium and antimony of the III-V family. It has a room temperature lattice constant of about 0.610 nm. It has a room temperature direct bandgap of approximately 0.73 eV. History The int ...
*
Gallium arsenide phosphide Gallium arsenide phosphide () is a semiconductor material, an alloy of gallium arsenide and gallium phosphide. It exists in various composition ratios indicated in its formula by the fraction ''x''. Gallium arsenide phosphide is used for manufact ...
* Gallium manganese arsenide *
Gallium nitride Gallium nitride () is a binary III/ V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4  eV af ...
*
Gallium phosphide Gallium phosphide (GaP), a phosphide of gallium, is a compound semiconductor material with an indirect band gap of 2.24 eV at room temperature. Impure polycrystalline material has the appearance of pale orange or grayish pieces. Undoped single cr ...
* Heterostructure emitter bipolar transistor *
Indium arsenide Indium arsenide, InAs, or indium monoarsenide, is a narrow-bandgap semiconductor composed of indium and arsenic. It has the appearance of grey cubic crystals with a melting point of 942 °C. Indium arsenide is similar in properties to gallium ars ...
*
Indium gallium arsenide Indium gallium arsenide (InGaAs) (alternatively gallium indium arsenide, GaInAs) is a ternary alloy (chemical compound) of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are Group 13 element, group III elements of the peri ...
*
Indium phosphide Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic ("zincblende (crystal structure), zincblende") crystal structure, identical to that of gallium arsenide, GaAs and most of the List of ...
*
Light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corre ...
*
MESFET A MESFET (metal–semiconductor field-effect transistor) is a field-effect transistor semiconductor device similar to a JFET with a Schottky (metal–semiconductor) junction instead of a p–n junction for a gate. Construction MESFETs are con ...
(metal–semiconductor field-effect transistor) *
MOVPE Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. ...
*
Multijunction solar cell Multi-junction (MJ) solar cells are solar cells with multiple p–n junctions made of different semiconductor materials. Each material's p–n junction will produce electric current in response to different wavelengths of light. The use of mult ...
* Photomixing to generate THz *
Trimethylgallium Trimethylgallium, often abbreviated to TMG or TMGa, is the organogallium compound with the formula Ga(CH3)3. It is a colorless, pyrophoric liquid. Unlike trimethylaluminium, TMG adopts a monomeric structure. When examined in detail, the monome ...


References


Cited sources

*


External links


Case Studies in Environmental Medicine: Arsenic Toxicity



Facts and figures on processing gallium arsenide
{{Authority control Arsenides Inorganic compounds Gallium compounds IARC Group 1 carcinogens Optoelectronics III-V semiconductors III-V compounds Solar cells Light-emitting diode materials Zincblende crystal structure