Zonohedron
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a zonohedron is a
convex polyhedron In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary su ...
that is
centrally symmetric In geometry, a point reflection (also called a point inversion or central inversion) is a geometric transformation of affine space in which every point is reflected across a designated inversion center, which remains fixed. In Euclidean or ...
, every face of which is a
polygon In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
that is centrally symmetric (a
zonogon In geometry, a zonogon is a centrally-symmetric, convex polygon. Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations, the two-dimensional analog of a zonohedron. Ex ...
). Any zonohedron may equivalently be described as the
Minkowski sum In geometry, the Minkowski sum of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'': A + B = \ The Minkowski difference (also ''Minkowski subtraction'', ''Minkowsk ...
of a set of line segments in three-dimensional space, or as a three-dimensional
projection Projection or projections may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphics, and carto ...
of a
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
. Zonohedra were originally defined and studied by E. S. Fedorove, a Russian
crystallographer A crystallographer is a type of scientist who practices crystallography, in other words, who studies crystals. Career paths The work of crystallographers spans several academic disciplines, including the life sciences, chemistry, physics, and m ...
. More generally, in any dimension, the Minkowski sum of line segments forms a
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
known as a zonotope.


Zonohedra that tile space

The original motivation for studying zonohedra is that the
Voronoi diagram In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. It can be classified also as a tessellation. In the simplest case, these objects are just finitely many points in the plane (calle ...
of any
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an or ...
forms a
convex uniform honeycomb In geometry, a convex uniform honeycomb is a uniform polytope, uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex polyhedron, convex uniform polyhedron, uniform polyhedral cells. Twenty-eight such honey ...
in which the cells are zonohedra. Any zonohedron formed in this way can
tessellate A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
3-dimensional space and is called a primary
parallelohedron In geometry, a parallelohedron or Fedorov polyhedron is a convex polyhedron that can be Translation (geometry), translated without rotations to fill Euclidean space, producing a Honeycomb (geometry), honeycomb in which all copies of the polyhed ...
. Each primary parallelohedron is combinatorially equivalent to one of five types: the
rhombohedron In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid) is a special case of a parallelepiped in which all six faces are congruent rhombi. It can be used to define the rhombohedral lattice system, a honeycomb w ...
(including the
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
),
hexagonal prism In geometry, the hexagonal prism is a Prism (geometry), prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 face (geometry), faces, 18 Edge (geometry), edges, and 12 vertex (geometry), vertices.. As a semiregular polyhedro ...
,
truncated octahedron In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagon, hexagons and 6 Squa ...
,
rhombic dodecahedron In geometry, the rhombic dodecahedron is a Polyhedron#Convex_polyhedra, convex polyhedron with 12 congruence (geometry), congruent rhombus, rhombic face (geometry), faces. It has 24 edge (geometry), edges, and 14 vertex (geometry), vertices of 2 ...
, and the
rhombo-hexagonal dodecahedron In geometry, the elongated dodecahedron, extended rhombic dodecahedron, rhombo-hexagonal dodecahedron or hexarhombic dodecahedron is a convex dodecahedron with 8 Rhombus, rhombic and 4 hexagonal faces. The hexagons can be made equilateral, or re ...
.


Zonohedra from Minkowski sums

Let \ be a collection of three-dimensional
vector Vector most often refers to: * Euclidean vector, a quantity with a magnitude and a direction * Disease vector, an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematics a ...
s. With each vector v_i we may associate a
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
\. The
Minkowski sum In geometry, the Minkowski sum of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'': A + B = \ The Minkowski difference (also ''Minkowski subtraction'', ''Minkowsk ...
\ forms a zonohedron, and all zonohedra that contain the origin have this form. The vectors from which the zonohedron is formed are called its generators. This characterization allows the definition of zonohedra to be generalized to higher dimensions, giving zonotopes. Each edge in a zonohedron is parallel to at least one of the generators, and has length equal to the sum of the lengths of the generators to which it is parallel. Therefore, by choosing a set of generators with no parallel pairs of vectors, and by setting all vector lengths equal, we may form an
equilateral An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the ...
version of any combinatorial type of zonohedron. By choosing sets of vectors with high degrees of symmetry, we can form in this way, zonohedra with at least as much symmetry. For instance, generators equally spaced around the equator of a sphere, together with another pair of generators through the poles of the sphere, form zonohedra in the form of
prism PRISM is a code name for a program under which the United States National Security Agency (NSA) collects internet communications from various U.S. internet companies. The program is also known by the SIGAD . PRISM collects stored internet ...
over regular 2k-gons: the
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
,
hexagonal prism In geometry, the hexagonal prism is a Prism (geometry), prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 face (geometry), faces, 18 Edge (geometry), edges, and 12 vertex (geometry), vertices.. As a semiregular polyhedro ...
, octagonal prism,
decagonal prism In geometry, a prism is a polyhedron comprising an polygon base, a second base which is a translated copy (rigidly moved without rotation) of the first, and other faces, necessarily all parallelograms, joining corresponding sides of the tw ...
,
dodecagonal prism In geometry, the dodecagonal prism is the tenth in an infinite set of prisms, formed by square sides and two regular dodecagon caps. If faces are all regular, it is a uniform polyhedron In geometry, a uniform polyhedron has regular polygons ...
, etc. Generators parallel to the edges of an octahedron form a
truncated octahedron In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagon, hexagons and 6 Squa ...
, and generators parallel to the long diagonals of a cube form a
rhombic dodecahedron In geometry, the rhombic dodecahedron is a Polyhedron#Convex_polyhedra, convex polyhedron with 12 congruence (geometry), congruent rhombus, rhombic face (geometry), faces. It has 24 edge (geometry), edges, and 14 vertex (geometry), vertices of 2 ...
. The Minkowski sum of any two zonohedra is another zonohedron, generated by the union of the generators of the two given zonohedra. Thus, the Minkowski sum of a cube and a truncated octahedron forms the
truncated cuboctahedron In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 ed ...
, while the Minkowski sum of the cube and the rhombic dodecahedron forms the
truncated rhombic dodecahedron In geometry, a chamfer or edge-truncation is a topological operator that modifies one polyhedron into another. It separates the faces by reducing them, and adds a new face between each two adjacent faces (moving the vertices inward). Opposit ...
. Both of these zonohedra are simple (three faces meet at each vertex), as is the truncated small rhombicuboctahedron formed from the Minkowski sum of the cube, truncated octahedron, and rhombic dodecahedron.


Zonohedra from arrangements

The
Gauss map In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to its normal direction, a unit vector that is orthogonal to the surface at that point. Namely, given a surface ''X'' in Euclidean space R3 ...
of any convex polyhedron maps each face of the polygon to a point on the unit sphere, and maps each edge of the polygon separating a pair of faces to a
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Discussion Any arc of a great circle is a geodesic of the sphere, so that great circles in spher ...
arc connecting the corresponding two points. In the case of a zonohedron, the edges surrounding each face can be grouped into pairs of parallel edges, and when translated via the Gauss map any such pair becomes a pair of contiguous segments on the same great circle. Thus, the edges of the zonohedron can be grouped into zones of parallel edges, which correspond to the segments of a common great circle on the Gauss map, and the 1-
skeleton A skeleton is the structural frame that supports the body of most animals. There are several types of skeletons, including the exoskeleton, which is a rigid outer shell that holds up an organism's shape; the endoskeleton, a rigid internal fra ...
of the zonohedron can be viewed as the planar dual graph to an arrangement of great circles on the sphere. Conversely any arrangement of great circles may be formed from the Gauss map of a zonohedron generated by vectors perpendicular to the planes through the circles. Any simple zonohedron corresponds in this way to a simplicial arrangement, one in which each face is a triangle. Simplicial arrangements of great circles correspond via central projection to simplicial arrangements of lines in the
projective plane In mathematics, a projective plane is a geometric structure that extends the concept of a plane (geometry), plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, paral ...
. There are three known infinite families of simplicial arrangements, one of which leads to the prisms when converted to zonohedra, and the other two of which correspond to additional infinite families of simple zonohedra. There are also many sporadic examples that do not fit into these three families. It follows from the correspondence between zonohedra and arrangements, and from the
Sylvester–Gallai theorem The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester, ...
which (in its
projective dual In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one t ...
form) proves the existence of crossings of only two lines in any arrangement, that every zonohedron has at least one pair of opposite
parallelogram In Euclidean geometry, a parallelogram is a simple polygon, simple (non-list of self-intersecting polygons, self-intersecting) quadrilateral with two pairs of Parallel (geometry), parallel sides. The opposite or facing sides of a parallelogram a ...
faces. (Squares, rectangles, and rhombuses count for this purpose as special cases of parallelograms.) More strongly, every zonohedron has at least six parallelogram faces, and every zonohedron has a number of parallelogram faces that is linear in its number of generators.


Types of zonohedra

Any
prism PRISM is a code name for a program under which the United States National Security Agency (NSA) collects internet communications from various U.S. internet companies. The program is also known by the SIGAD . PRISM collects stored internet ...
over a regular polygon with an even number of sides forms a zonohedron. These prisms can be formed so that all faces are regular: two opposite faces are equal to the regular polygon from which the prism was formed, and these are connected by a sequence of square faces. Zonohedra of this type are the
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
,
hexagonal prism In geometry, the hexagonal prism is a Prism (geometry), prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 face (geometry), faces, 18 Edge (geometry), edges, and 12 vertex (geometry), vertices.. As a semiregular polyhedro ...
, octagonal prism,
decagonal prism In geometry, a prism is a polyhedron comprising an polygon base, a second base which is a translated copy (rigidly moved without rotation) of the first, and other faces, necessarily all parallelograms, joining corresponding sides of the tw ...
,
dodecagonal prism In geometry, the dodecagonal prism is the tenth in an infinite set of prisms, formed by square sides and two regular dodecagon caps. If faces are all regular, it is a uniform polyhedron In geometry, a uniform polyhedron has regular polygons ...
, etc. In addition to this infinite family of regular-faced zonohedra, there are three
Archimedean solid The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygon and are vertex-transitive, although they aren't face-transitive. The solids were named after Archimedes, although he did not claim credit for them. They ...
s, all omnitruncations of the regular forms: * The
truncated octahedron In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagon, hexagons and 6 Squa ...
, with 6 square and 8 hexagonal faces. (Omnitruncated tetrahedron) * The
truncated cuboctahedron In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 ed ...
, with 12 squares, 8 hexagons, and 6 octagons. (Omnitruncated cube) * The
truncated icosidodecahedron In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron,Wenninger Model Number 16 great rhombicosidodecahedron,Williams (Section 3-9, p. 94)Cromwell (p. 82) omnitruncated dodecahedron or omnitruncated icosahedronNorman Wooda ...
, with 30 squares, 20 hexagons and 12 decagons. (Omnitruncated dodecahedron) In addition, certain
Catalan solid The Catalan solids are the dual polyhedron, dual polyhedra of Archimedean solids. The Archimedean solids are thirteen highly-symmetric polyhedra with regular faces and symmetric vertices. The faces of the Catalan solids correspond by duality to ...
s (duals of Archimedean solids) are again zonohedra: * Kepler's rhombic dodecahedron is the dual of the
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertex (geometry), vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edge (geometry), edges, each separating a tr ...
. * The
rhombic triacontahedron The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombus, rhombic face (geometry), faces. It has 60 edge (geometry), edges and 32 vertex ...
is the dual of the
icosidodecahedron In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (''icosi-'') triangular faces and twelve (''dodeca-'') pentagonal faces. An icosidodecahedron has 30 identical Vertex (geometry), vertices, with two triang ...
. Others with congruent rhombic faces: * Bilinski's rhombic dodecahedron. *
Rhombic icosahedron The rhombic icosahedron is a polyhedron shaped like an Oblate spheroid, oblate sphere. Its 20 faces are Congruence (geometry), congruent golden rhombi; 3, 4, or 5 faces meet at each vertex. It has 5 faces (green on top figure) meeting at each of ...
*
Rhombohedron In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid) is a special case of a parallelepiped in which all six faces are congruent rhombi. It can be used to define the rhombohedral lattice system, a honeycomb w ...
There are infinitely many zonohedra with rhombic faces that are not all congruent to each other. They include: *
Rhombic enneacontahedron In geometry, a rhombic enneacontahedron (plural: rhombic enneacontahedra) is a polyhedron composed of 90 rhombic faces; with three, five, or six rhombi meeting at each vertex. It has 60 broad rhombi and 30 slim. The rhombic enneacontahedron is a ...


Dissection of zonohedra

Every zonohedron with n zones can be partitioned into \tbinom
parallelepiped In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term ''rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. Three equiva ...
s, each having three of the same zones, and with one parallelepiped for each triple of zones. The
Dehn invariant In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled (" dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who ...
of any zonohedron is zero. This implies that any two zonohedra with the same
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
can be dissected into each other. This means that it is possible to cut one of the two zonohedra into polyhedral pieces that can be reassembled into the other..


Zonohedrification

Zonohedrification is a process defined by
George W. Hart George William Hart (born 1955) is an American sculptor and geometer. Before retiring, he was an associate professor of Electrical Engineering at Columbia University in New York City and then an interdepartmental research professor at Stony Bro ...
for creating a zonohedron from another polyhedron. First the vertices of any seed polyhedron are considered vectors from the polyhedron center. These vectors create the zonohedron which we call the zonohedrification of the original polyhedron. If the seed polyhedron has
central symmetry In geometry, a point reflection (also called a point inversion or central inversion) is a geometric transformation of affine space in which every point (geometry), point is reflected across a designated inversion center, which remains Fixed p ...
, opposite points define the same direction, so the number of zones in the zonohedron is half the number of vertices of the seed. For any two vertices of the original polyhedron, there are two opposite planes of the zonohedrification which each have two edges parallel to the vertex vectors.


Zonotopes

The
Minkowski sum In geometry, the Minkowski sum of two sets of position vectors ''A'' and ''B'' in Euclidean space is formed by adding each vector in ''A'' to each vector in ''B'': A + B = \ The Minkowski difference (also ''Minkowski subtraction'', ''Minkowsk ...
of
line segments In geometry, a line segment is a part of a straight line that is bounded by two distinct endpoints (its extreme points), and contains every point on the line that is between its endpoints. It is a special case of an '' arc'', with zero curvatu ...
in any dimension forms a type of
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
called a zonotope. Equivalently, a zonotope Z generated by vectors v_1,...,v_k\in\mathbb^n is given by Z = \. Note that in the special case where k \leq n, the zonotope Z is a (possibly degenerate) parallelotope. The facets of any zonotope are themselves zonotopes of one lower dimension; for instance, the faces of zonohedra are
zonogon In geometry, a zonogon is a centrally-symmetric, convex polygon. Equivalently, it is a convex polygon whose sides can be grouped into parallel pairs with equal lengths and opposite orientations, the two-dimensional analog of a zonohedron. Ex ...
s. Examples of four-dimensional zonotopes include the
tesseract In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. Just as the perimeter of the square consists of four edges and the surface of the cube consists of six ...
(Minkowski sums of ''d'' mutually perpendicular equal length line segments), the omnitruncated 5-cell, and the
truncated 24-cell In geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the Truncation (geometry), truncation of the regular 24-cell. There are two degrees of truncations, including a bitruncation. Truncated 24-cell ...
. Every
permutohedron In mathematics, the permutohedron (also spelled permutahedron) of order is an -dimensional polytope embedded in an -dimensional space. Its vertex (geometry), vertex coordinates (labels) are the permutations of the first natural numbers. The edg ...
is a zonotope.


Zonotopes and Matroids

Fix a zonotope Z defined from the set of vectors V = \\subset\mathbb^d and let M be the d \times n matrix whose columns are the v_i. Then the vector matroid \underline on the columns of M encodes a wealth of information about Z, that is, many properties of Z are purely combinatorial in nature. For example, pairs of opposite facets of Z are naturally indexed by the cocircuits of \mathcal and if we consider the
oriented matroid An oriented matroid is a mathematical structure that abstracts the properties of directed graphs, vector arrangements over ordered fields, and hyperplane arrangements over ordered fields. In comparison, an ordinary (i.e., non-oriented) matroid a ...
\mathcal represented by , then we obtain a bijection between facets of Z and signed cocircuits of \mathcal which extends to a poset anti-isomorphism between the
face lattice A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
of Z and the covectors of \mathcal ordered by component-wise extension of 0 \prec +, -. In particular, if M and N are two matrices that differ by a
projective transformation In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...
then their respective zonotopes are combinatorially equivalent. The converse of the previous statement does not hold: the segment ,2\subset \mathbb is a zonotope and is generated by both \ and by \ whose corresponding matrices, /math> and ~1/math>, do not differ by a projective transformation.


Tilings

Tiling properties of the zonotope Z are also closely related to the oriented matroid \mathcal associated to it. First we consider the space-tiling property. The zonotope Z is said to ''tile'' \mathbb^d if there is a set of vectors \Lambda \subset \mathbb^d such that the union of all translates Z + \lambda (\lambda \in \Lambda) is \mathbb^d and any two translates intersect in a (possibly empty) face of each. Such a zonotope is called a ''space-tiling zonotope.'' The following classification of space-tiling zonotopes is due to McMullen: The zonotope Z generated by the vectors V tiles space if and only if the corresponding oriented matroid is
regular Regular may refer to: Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instruments, tunings with equal intervals between the paired notes of successive open strings Other uses * Regular character, ...
. So the seemingly geometric condition of being a space-tiling zonotope actually depends only on the combinatorial structure of the generating vectors. Another family of tilings associated to the zonotope Z are the ''zonotopal tilings'' of Z. A collection of zonotopes is a zonotopal tiling of Z if it a polyhedral complex with support Z, that is, if the union of all zonotopes in the collection is Z and any two intersect in a common (possibly empty) face of each. Many of the images of zonohedra on this page can be viewed as zonotopal tilings of a 2-dimensional zonotope by simply considering them as planar objects (as opposed to planar representations of three dimensional objects). The Bohne-Dress Theorem states that there is a bijection between zonotopal tilings of the zonotope Z and ''single-element lifts'' of the oriented matroid \mathcal associated to Z.


Volume

Zonohedra, and ''n''-dimensional zonotopes in general, are noteworthy for admitting a simple analytic formula for their volume. Let Z(S) be the zonotope Z = \ generated by a set of vectors S = \. Then the n-dimensional volume of Z(S) is given by :\sum_ , \det(Z(T)), The determinant in this formula makes sense because (as noted above) when the set T has cardinality equal to the dimension n of the ambient space, the zonotope is a parallelotope. Note that when k, this formula simply states that the zonotope has n-volume zero.


See also

*
Equiprojective polyhedra In mathematics, a convex polyhedron is defined to be k-equiprojective if every orthogonal projection of the polygon onto a plane, in a direction not parallel to a face of the polyhedron, forms a k-gon. For example, a cube is 6-equiprojective: every ...
*
Zonoid In convex geometry, a zonoid is a type of centrally symmetric convex body. Definitions The zonoids have several definitions, equivalent up to translations of the resulting shapes: * A zonoid is a shape that can be approximated arbitrarily clos ...
, the limit shape of a sequence of zonotopes


References

* Reprinted in * * Rolf Schneider, Chapter 3.5 "Zonoids and other classes of convex bodies" in ''Convex bodies: the Brunn-Minkowski theory,'' Cambridge University Press, Cambridge, 1993. * * *


External links

* * * * * * {{ cite web , author = Centore, Paul , title = Chap. 2 of The Geometry of Colour , url = https://www.munsellcolourscienceforpainters.com/TheGeometryOfColour/TheGeometryOfColourPreview.pdf Polyhedra Oriented matroids de:Zonotop#Zonoeder