For
fluid power
Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is conventionally subdivided into hydraulics (using a liquid such as mineral oil or water) and pneumatics (using a gas such as compressed ...
, a working fluid is a
gas
Gas is a state of matter that has neither a fixed volume nor a fixed shape and is a compressible fluid. A ''pure gas'' is made up of individual atoms (e.g. a noble gas like neon) or molecules of either a single type of atom ( elements such as ...
or
liquid
Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to th ...
that primarily transfers
force
In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
,
motion
In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an o ...
, or
mechanical energy
In physical sciences, mechanical energy is the sum of macroscopic potential and kinetic energies. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical ...
. In
hydraulics
Hydraulics () is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counterpart of pneumatics, which concer ...
,
water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
or
hydraulic fluid
A hydraulic fluid or hydraulic liquid is the medium by which power is transferred in hydraulic machinery. Common hydraulic fluids are based on mineral oil or water. Examples of equipment that might use hydraulic fluids are excavators and backho ...
transfers force between hydraulic components such as
hydraulic pump
A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy ( hydrostatic energy i.e. flow, pressure). Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They gen ...
s,
hydraulic cylinder
A hydraulic cylinder (also called a linear hydraulic motor) is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. It has many applications, notably in construction equipment ( engineering vehicles ...
s, and
hydraulic motor
A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, ...
s that are assembled into
hydraulic machinery
Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine a ...
,
hydraulic drive systems, etc. In
pneumatics
Pneumatics (from Greek 'wind, breath') is the use of gas or pressurized air in mechanical systems.
Pneumatic systems used in industry are commonly powered by compressed air or compressed inert gases. A centrally located and electrically- ...
, the working fluid is
air
An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
or another gas which transfers force between pneumatic components such as
compressor
A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.
Many compressors can be staged, that is, the gas is compressed several times in steps o ...
s,
vacuum pump
A vacuum pump is a type of pump device that draws gas particles from a sealed volume in order to leave behind a partial vacuum. The first vacuum pump was invented in 1650 by Otto von Guericke, and was preceded by the suction pump, which dates to ...
s,
pneumatic cylinder
Pneumatic cylinder, also known as air cylinder, is a mechanical device which uses the power of compressed gas to produce a force in a reciprocating linear motion.
Like in a hydraulic cylinder, something forces a piston to move in the desired ...
s, and
pneumatic motor
A pneumatic motor (air motor), or compressed-air engine, is a type of motor which does mechanical work by expanding compressed air. Pneumatic motors generally convert the compressed-air energy to mechanical work through either linear or rotary ...
s. In pneumatic systems, the working gas also
stores energy because it is compressible. (Gases also heat up as they are compressed and cool as they expand. Some gases also condense into liquids as they are compressed and boil as pressure is reduced.)
For passive
heat transfer
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
, a working fluid is a gas or liquid, usually called a
coolant
A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corr ...
or heat transfer fluid, that primarily transfers
heat
In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
into or out of a region of interest by
conduction
Conductor or conduction may refer to:
Biology and medicine
* Bone conduction, the conduction of sound to the inner ear
* Conduction aphasia, a language disorder
Mathematics
* Conductor (ring theory)
* Conductor of an abelian variety
* Condu ...
,
convection
Convection is single or Multiphase flow, multiphase fluid flow that occurs Spontaneous process, spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoy ...
, and/or
forced convection
Forced convection is a mechanism, or type of transport, in which fluid motion is generated by an external source (like a pump, fan, suction device, etc.). Alongside natural convection, thermal radiation, and thermal conduction it is one of the met ...
(pumped
liquid cooling
Liquid cooling refers to cooling by means of the convection or circulation (fluid dynamics), circulation of a liquid.
Examples of liquid cooling technologies include:
* Cooling by convection or circulation of coolant, including water cooling
* L ...
,
air cooling
Air cooling is a method of dissipating heat. It works by expanding the surface area or increasing the flow of air over the object to be cooled, or both. An example of the former is to add cooling fins to the surface of the object, either by maki ...
, etc.).
The working fluid of a
heat engine
A heat engine is a system that transfers thermal energy to do mechanical or electrical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, pa ...
or
heat pump
A heat pump is a device that uses electricity to transfer heat from a colder place to a warmer place. Specifically, the heat pump transfers thermal energy using a heat pump and refrigeration cycle, cooling the cool space and warming the warm s ...
is a gas or liquid, usually called a
refrigerant
A refrigerant is a working fluid used in the cooling, heating, or reverse cooling/heating cycles of air conditioning systems and heat pumps, where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are ...
, coolant, or working gas, that primarily converts
thermal energy
The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including:
* Internal energy: The energy contained within a body of matter or radiation, excluding the potential en ...
(temperature change) into mechanical energy (or vice versa) by
phase change and/or
heat of compression and expansion. Examples using phase change include water↔steam in
steam engine
A steam engine is a heat engine that performs Work (physics), mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a Cylinder (locomotive), cyl ...
s, and
refrigerant
A refrigerant is a working fluid used in the cooling, heating, or reverse cooling/heating cycles of air conditioning systems and heat pumps, where they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are ...
s in
vapor-compression refrigeration
Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings an ...
and
air conditioning
Air conditioning, often abbreviated as A/C (US) or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior temperature, and in some cases, also controlling the humidity of internal air. Air c ...
systems. Examples without phase change include air or hydrogen in
hot air engine
A hot air engine (historically called an air engine or caloric theory, caloric engine) is any heat engine that uses the expansion and contraction of air under the influence of a temperature change to convert thermal energy into mechanical work. ...
s such as the
Stirling engine
A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (ph ...
, air or gases in
gas-cycle heat pumps, etc. (Some heat pumps and heat engines use "working solids", such as rubber bands, for
elastocaloric refrigeration or thermoelastic cooling and
nickel titanium
Nickel titanium, also known as nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and ...
in a prototype heat engine.)
Working fluids other than air or water are necessarily recirculated in a loop. Some hydraulic and passive heat-transfer systems are open to the water supply and/or atmosphere, sometimes through breather
filters
Filtration is a physical process that separates solid matter and fluid from a mixture.
Filter, filtering, filters or filtration may also refer to:
Science and technology
Computing
* Filter (higher-order function), in functional programming
* Fil ...
. Heat engines, heat pumps, and systems using volatile liquids or special gases are usually sealed behind
relief valve
A relief valve or pressure relief valve (PRV) is a type of safety valve used to control or limit the pressure in a system; excessive pressure might otherwise build up and create a process upset, instrument or equipment failure, explosion, or fir ...
s.
Properties and states
The
working fluid's properties are essential for the full description of thermodynamic systems. Although working fluids have many physical properties which can be defined, the thermodynamic properties which are often required in engineering design and analysis are few.
Pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
,
temperature
Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
,
enthalpy
Enthalpy () is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant extern ...
,
entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
,
specific volume
In thermodynamics, the specific volume of a substance (symbol: , nu) is the quotient of the substance's volume () to its mass ():
:\nu = \frac
It is a mass-specific intrinsic property of the substance. It is the reciprocal of density (rho) ...
, and
internal energy
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accoun ...
are the most common.
If at least two thermodynamic properties are known, the state of the working fluid can be defined. This is usually done on a property diagram which is simply a plot of one property versus another.
When the working fluid passes through engineering components such as
turbine
A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical ...
s and
compressor
A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.
Many compressors can be staged, that is, the gas is compressed several times in steps o ...
s, the point on a property diagram moves due to the possible changes of certain properties. In theory therefore it is possible to draw a line/curve which fully describes the thermodynamic properties of the fluid. In reality however this can only be done if the process is
reversible. If not, the changes in property are represented as a dotted line on a property diagram. This issue does not really affect thermodynamic analysis since in most cases it is the end states of a process which are sought after.
Work
The working fluid can be used to output useful
work
Work may refer to:
* Work (human activity), intentional activity people perform to support themselves, others, or the community
** Manual labour, physical work done by humans
** House work, housework, or homemaking
** Working animal, an ani ...
if used in a
turbine
A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical ...
. Also, in thermodynamic cycles energy may be input to the working fluid by means of a
compressor
A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.
Many compressors can be staged, that is, the gas is compressed several times in steps o ...
. The mathematical formulation for this may be quite simple if we consider a cylinder in which a working fluid resides. A piston is used to input useful work to the fluid. From mechanics, the work done from state 1 to state 2 of the process is given by:
:
where ''ds'' is the incremental distance from one state to the next and ''F'' is the force applied. The negative sign is introduced since in this case a decrease in volume is being considered. The situation is shown in the following figure:
The force is given by the product of the pressure in the cylinder and its cross sectional area such that
:
Where ''A⋅ds = dV'' is the elemental change of cylinder volume. If from state 1 to 2 the volume increases then the working fluid actually does work on its surroundings and this is commonly denoted by a negative work. If the volume decreases the work is positive. By the definition given with the above integral the work done is represented by the area under a
pressure–volume diagram
A pressure–volume diagram (or PV diagram, or volume–pressure loop) is used to describe corresponding changes in volume and pressure in a system. It is commonly used in thermodynamics, cardiovascular physiology, and respiratory physiology.
PV ...
. If we consider the case where we have a constant pressure process then the work is simply given by
:
Selection
Depending on the application, various types of working fluids are used. In a thermodynamic cycle it may be the case that the working fluid changes state from gas to liquid or vice versa. Certain gases such as helium can be treated as
ideal gas
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is ...
es. This is not generally the case for superheated steam and the
ideal gas equation
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first sta ...
does not really hold. At much higher temperatures however it still yields relatively accurate results. The physical and chemical properties of the working fluid are extremely important when designing thermodynamic systems. For instance, in a refrigeration unit, the working fluid is called the refrigerant.
Ammonia
Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
is a typical refrigerant and may be used as the primary working fluid. Compared with water (which can also be used as a refrigerant), ammonia makes use of relatively high pressures requiring more robust and expensive equipment.
In air standard cycles as in
gas turbine
A gas turbine or gas turbine engine is a type of Internal combustion engine#Continuous combustion, continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas gene ...
cycles, the working fluid is air. In the open cycle gas turbine, air enters a compressor where its pressure is increased. The compressor therefore inputs work to the working fluid (positive work). The fluid is then transferred to a combustion chamber where this time heat energy is input by means of the burning of a fuel. The air then expands in a turbine thus doing work against the surroundings (negative work).
Different working fluids have different properties and in choosing one in particular the designer must identify the major requirements. In refrigeration units, high latent heats are required to provide large refrigeration capacities.
Applications and examples
The following table gives typical applications of working fluids and examples for each:
See also
*
List of gases
This is a list of gases at standard conditions, which means substances that boil or sublime at or below and 1 atm pressure and are reasonably stable.
List
This list is sorted by boiling point of gases in ascending order, but can be sorted ...
*
Water power engine
References
*
{{Steam engine configurations, state=collapsed
Engines
Fluid mechanics
Thermodynamics