Search types
Feature search
250px, feature based search task Feature search (also known as "disjunctive" or "efficient" search) is a visual search process that focuses on identifying a previously requested target amongst distractors that differ from the target by a unique visual feature such as color, shape, orientation, or size. An example of a feature search task is asking a participant to identify a white square (target) surrounded by black squares (distractors). In this type of visual search, the distractors are characterized by the same visual features. The efficiency of feature search in regards to reaction time (RT) and accuracy depends on the "pop out" effect, bottom-up processing, and parallel processing. However, the efficiency of feature search is unaffected by the number of distractors present. The "pop out" effect is an element of feature search that characterizes the target's ability to stand out from surrounding distractors due to its unique feature. Bottom-up processing, which is the processing of information that depends on input from the environment, explains how one utilizes feature detectors to process characteristics of the stimuli and differentiate a target from its distractors. This draw of visual attention towards the target due to bottom-up processes is known as "saliency." Lastly, parallel processing is the mechanism that then allows one's feature detectors to work simultaneously in identifying the target.Conjunction search
Real world visual search
In everyday situations, people are most commonly searching their visual fields for targets that are familiar to them. When it comes to searching for familiar stimuli, top-down processing allows one to more efficiently identify targets with greater complexity than can be represented in a feature or conjunction search task. In a study done to analyze the reverse-letter effect, which is the idea that identifying the asymmetric letter among symmetric letters is more efficient than its reciprocal, researchers concluded that individuals more efficiently recognize an asymmetric letter among symmetric letters due to top-down processes. Top-down processes allowed study participants to access prior knowledge regarding shape recognition of the letter N and quickly eliminate the stimuli that matched their knowledge. In the real world, one must use prior knowledge everyday in order to accurately and efficiently locate objects such as phones, keys, etc. among a much more complex array of distractors. Despite this complexity, visual search with complex objects (and search for categories of objects, such as "phone", based on prior knowledge) appears to rely on the same active scanning processes as conjunction search with less complex, contrived laboratory stimuli, although global statistical information available in real-world scenes can also help people locate target objects. While bottom-up processes may come into play when identifying objects that are not as familiar to a person, overall top-down processing highly influences visual searches that occur in everyday life. Familiarity can play especially critical roles when parts of objects are not visible (as when objects are partly hidden from view because they are behind other objects). Visual information from hidden parts can be recalled from long-term memory and used to facilitate search for familiar objects.Reaction time slope
It is also possible to measure the role of attention within visual search experiments by calculating the slope of reaction time over the number of distractors present. Generally, when high levels of attention are required when looking at a complex array of stimuli ( conjunction search), the slope increases as reaction times increase. For simple visual search tasks ( feature search), the slope decreases due to reaction times being fast and requiring less attention. However, the use of a reaction time slope to measure attention is controversial because non-attentional factors can also affect reaction time slope.Visual orienting and attention
Theory
Feature integration theory (FIT)
A popular explanation for the different reaction times of feature and conjunction searches is the feature integration theory (FIT), introduced by Treisman and Gelade in 1980. This theory proposes that certain visual features are registered early, automatically, and are coded rapidly in parallel across the visual field using pre-attentive processes. Experiments show that these features include luminance, colour, orientation, motion direction, and velocity, as well as some simple aspects of form. For example, a red X can be quickly found among any number of black Xs and Os because the red X has the discriminative feature of colour and will "pop out." In contrast, this theory also suggests that in order to integrate two or more visual features belonging to the same object, a later process involving integration of information from different brain areas is needed and is coded serially using focal attention. For example, when locating an orange square among blue squares and orange triangles, neither the colour feature "orange" nor the shape feature "square" is sufficient to locate the search target. Instead, one must integrate information of both colour and shape to locate the target. Evidence that attention and thus later visual processing is needed to integrate two or more features of the same object is shown by the occurrence of illusory conjunctions, or when features do not combine correctly For example, if a display of a green X and a red O are flashed on a screen so briefly that the later visual process of a serial search with focal attention cannot occur, the observer may report seeing a red X and a green O. The FIT is a dichotomy because of the distinction between its two stages: the preattentive and attentive stages. Preattentive processes are those performed in the first stage of the FIT model, in which the simplest features of the object are being analyzed, such as color, size, and arrangement. The second attentive stage of the model incorporates cross-dimensional processing, and the actual identification of an object is done and information about the target object is put together. This theory has not always been what it is today; there have been disagreements and problems with its proposals that have allowed the theory to be amended and altered over time, and this criticism and revision has allowed it to become more accurate in its description of visual search. There have been disagreements over whether or not there is a clear distinction between feature detection and other searches that use a master map accounting for multiple dimensions in order to search for an object. Some psychologists support the idea that feature integration is completely separate from this type of master map search, whereas many others have decided that feature integration incorporates this use of a master map in order to locate an object in multiple dimensions. The FIT also explains that there is a distinction between the brain's processes that are being used in a parallel versus a focal attention task. Chan and Hayward have conducted multiple experiments supporting this idea by demonstrating the role of dimensions in visual search. While exploring whether or not focal attention can reduce the costs caused by dimension-switching in visual search, they explained that the results collected supported the mechanisms of the feature integration theory in comparison to other search-based approaches. They discovered that single dimensions allow for a much more efficient search regardless of the size of the area being searched, but once more dimensions are added it is much more difficult to efficiently search, and the bigger the area being searched the longer it takes for one to find the target.Guided search model
A second main function of preattentive processes is to direct focal attention to the most "promising" information in the visual field. There are two ways in which these processes can be used to direct attention: bottom-up activation (which is stimulus-driven) and top-down activation (which is user-driven). In the guided search model by Jeremy Wolfe, information from top-down and bottom-up processing of the stimulus is used to create a ranking of items in order of their attentional priority. In a visual search, attention will be directed to the item with the highest priority. If that item is rejected, then attention will move on to the next item and the next, and so forth. The guided search theory follows that of parallel search processing. An activation map is a representation of visual space in which the level of activation at a location reflects the likelihood that the location contains a target. This likelihood is based on preattentive, featural information of the perceiver. According to the guided search model, the initial processing of basic features produces an activation map, with every item in the visual display having its own level of activation. Attention is demanded based on peaks of activation in the activation map in a search for the target. Visual search can proceed efficiently or inefficiently. During efficient search, performance is unaffected by the number of distractor items. The reaction time functions are flat, and the search is assumed to be a parallel search. Thus, in the guided search model, a search is efficient if the target generates the highest, or one of the highest activation peaks. For example, suppose someone is searching for red, horizontal targets. Feature processing would activate all red objects and all horizontal objects. Attention is then directed to items depending on their level of activation, starting with those most activated. This explains why search times are longer when distractors share one or more features with the target stimuli. In contrast, during inefficient search, the reaction time to identify the target increases linearly with the number of distractor items present. According to the guided search model, this is because the peak generated by the target is not one of the highest.Biological basis
Evolution
There is a variety of speculation about the origin and evolution of visual search in humans. It has been shown that during visual exploration of complex natural scenes, both humans and nonhuman primates make highly stereotyped eye movements. Furthermore, chimpanzees have demonstrated improved performance in visual searches for upright human or dog faces, suggesting that visual search (particularly where the target is a face) is not peculiar to humans and that it may be a primal trait. Research has suggested that effective visual search may have developed as a necessary skill for survival, where being adept at detecting threats and identifying food was essential.Face recognition
Over the past few decades there have been vast amounts of research into face recognition, specifying that faces endure specialized processing within a region called the fusiform face area (FFA) located in the mid fusiform gyrus in the temporal lobe. Debates are ongoing whether both faces and objects are detected and processed in different systems and whether both have category specific regions for recognition and identification. Much research to date focuses on the accuracy of the detection and the time taken to detect the face in a complex visual search array. When faces are displayed in isolation, upright faces are processed faster and more accurately than inverted faces, but this effect was observed in non-face objects as well. When faces are to be detected among inverted or jumbled faces, reaction times for intact and upright faces increase as the number of distractors within the array is increased. Hence, it is argued that the 'pop out' theory defined in feature search is not applicable in the recognition of faces in such visual search paradigm. Conversely, the opposite effect has been argued and within a natural environmental scene, the 'pop out' effect of the face is significantly shown. This could be due to evolutionary developments as the need to be able to identify faces that appear threatening to the individual or group is deemed critical in the survival of the fittest. More recently, it was found that faces can be efficiently detected in a visual search paradigm, if the distracters are non-face objects, however it is debated whether this apparent 'pop out' effect is driven by a high-level mechanism or by low-level confounding features. Furthermore, patients with developmental prosopagnosia, who have impaired face identification, generally detect faces normally, suggesting that visual search for faces is facilitated by mechanisms other than the face-identification circuits of the fusiform face area. Patients with forms of dementia can also have deficits in facial recognition and the ability to recognize human emotions in the face. In a meta-analysis of nineteen different studies comparing normal adults with dementia patients in their abilities to recognize facial emotions, the patients with frontotemporal dementia were seen to have a lower ability to recognize many different emotions. These patients were much less accurate than the control participants (and even in comparison with Alzheimer's patients) in recognizing negative emotions, but were not significantly impaired in recognizing happiness. Anger and disgust in particular were the most difficult for the dementia patients to recognize. Face recognition is a complex process that is affected by many factors, both environmental and individually internal. Other aspects to be considered include race and culture and their effects on one's ability to recognize faces. Some factors such as the cross-race effect can influence one's ability to recognize and remember faces.Considerations
Ageing
Research indicates that performance in conjunctive visual search tasks significantly improves during childhood and declines in later life. More specifically, young adults have been shown to have faster reaction times on conjunctive visual search tasks than both children and older adults, but their reaction times were similar for feature visual search tasks. This suggests that there is something about the process of integrating visual features or serial searching that is difficult for children and older adults, but not for young adults. Studies have suggested numerous mechanisms involved in this difficulty in children, including peripheral visual acuity, eye movement ability, ability of attentional focal movement, and the ability to divide visual attention among multiple objects. Studies have suggested similar mechanisms in the difficulty for older adults, such as age related optical changes that influence peripheral acuity, the ability to move attention over the visual field, the ability to disengage attention, and the ability to ignore distractors. A study by Lorenzo-López et al. (2008) provides neurological evidence for the fact that older adults have slower reaction times during conjunctive searches compared to young adults. Event-related potentials (ERPs) showed longer latencies and lower amplitudes in older subjects than young adults at the P3 component, which is related to activity of the parietal lobes. This suggests the involvement of the parietal lobe function with an age-related decline in the speed of visual search tasks. Results also showed that older adults, when compared to young adults, had significantly less activity in the anterior cingulate cortex and many limbic and occipitotemporal regions that are involved in performing visual search tasks.Alzheimer's disease
Research has found that people withAutism
Studies have consistently shown that autistic individuals performed better and with lower reaction times in feature and conjunctive visual search tasks than matched controls without autism. Several explanations for these observations have been suggested. One possibility is that people with autism have enhanced perceptual capacity. This means that autistic individuals are able to process larger amounts of perceptual information, allowing for superior parallel processing and hence faster target location. Second, autistic individuals show superior performance in discrimination tasks between similar stimuli and therefore may have an enhanced ability to differentiate between items in the visual search display. A third suggestion is that autistic individuals may have stronger top-down target excitation processing and stronger distractor inhibition processing than controls. Keehn et al. (2008) used an event-related functional magnetic resonance imaging design to study the neurofunctional correlates of visual search in autistic children and matched controls of typically developing children. Autistic children showed superior search efficiency and increased neural activation patterns in the frontal, parietal, and occipital lobes when compared to the typically developing children. Thus, autistic individuals' superior performance on visual search tasks may be due to enhanced discrimination of items on the display, which is associated with occipital activity, and increased top-down shifts of visual attention, which is associated with the frontal and parietal areas.Consumer psychology
In the past decade, there has been extensive research into how companies can maximise sales using psychological techniques derived from visual search to determine how products should be positioned on shelves. Pieters and Warlop (1999) used eye tracking devices to assess saccades and fixations of consumers while they visually scanned/searched an array of products on a supermarket shelf. Their research suggests that consumers specifically direct their attention to products with eye-catching properties such as shape, colour or brand name. This effect is due to a pressured visual search where eye movements accelerate and saccades minimise, thus resulting in the consumer's quickly choosing a product with a 'pop out' effect. This study suggests that efficient search is primarily used, concluding that consumers do not focus on items that share very similar features. The more distinct or maximally visually different a product is from surrounding products, the more likely the consumer is to notice it. Janiszewski (1998) discussed two types of consumer search. One search type is goal directed search taking place when somebody uses stored knowledge of the product in order to make a purchase choice. The second is exploratory search. This occurs when the consumer has minimal previous knowledge about how to choose a product. It was found that for exploratory search, individuals would pay less attention to products that were placed in visually competitive areas such as the middle of the shelf at an optimal viewing height. This was primarily due to the competition in attention meaning that less information was maintained in visual working memory for these products.References
{{DEFAULTSORT:Visual Search Neuropsychology Perception Cognitive psychology