Unipotent
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a unipotent element ''r'' of a ring ''R'' is one such that ''r'' − 1 is a
nilpotent element In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister idempotent, was introduced by Benjamin Peirce i ...
; in other words, (''r'' − 1)''n'' is zero for some ''n''. In particular, a
square matrix In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Squ ...
''M'' is a unipotent matrix
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
its
characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The ...
''P''(''t'') is a power of ''t'' − 1. Thus all the
eigenvalue In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
s of a unipotent matrix are 1. The term quasi-unipotent means that some power is unipotent, for example for a
diagonalizable matrix In linear algebra, a square matrix A is called diagonalizable or non-defective if it is matrix similarity, similar to a diagonal matrix. That is, if there exists an invertible matrix P and a diagonal matrix D such that . This is equivalent to ...
with eigenvalues that are all
roots of unity In mathematics, a root of unity is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group char ...
. In the theory of algebraic groups, a group element is unipotent if it acts unipotently in a certain natural
group representation In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used ...
. A unipotent affine algebraic group is then a group with all elements unipotent.


Definition


Definition with matrices

Consider the group \mathbb_n of upper-triangular matrices with 1's along the diagonal, so they are the group of matrices :\mathbb_n = \left\. Then, a unipotent group can be defined as a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of some \mathbb_n. Using
scheme theory In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different s ...
the group \mathbb_n can be defined as the
group scheme In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups hav ...
:\text\left( \frac \right) and an affine group scheme is unipotent if it is a closed group scheme of this scheme.


Definition with ring theory

An element ''x'' of an affine algebraic group is unipotent when its associated right translation operator, ''r''''x'', on the affine coordinate ring ''A'' 'G''of ''G'' is locally unipotent as an element of the ring of linear endomorphism of ''A'' 'G'' (Locally unipotent means that its restriction to any finite-dimensional stable subspace of ''A'' 'G''is unipotent in the usual ring-theoretic sense.) An affine algebraic group is called unipotent if all its elements are unipotent. Any unipotent algebraic group is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to a closed subgroup of the group of upper triangular matrices with diagonal entries 1, and conversely any such subgroup is unipotent. In particular any unipotent group is a nilpotent group, though the converse is not true (counterexample: the diagonal matrices of GL''n''(''k'')). For example, the standard representation of \mathbb_n on k^n with standard basis e_i has the fixed vector e_1.


Definition with representation theory

If a unipotent group acts on an affine variety, all its orbits are closed, and if it acts linearly on a finite-dimensional
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
then it has a non-zero fixed vector. In fact, the latter property characterizes unipotent groups. In particular, this implies there are no non-trivial
semisimple representation In mathematics, specifically in representation theory, a semisimple representation (also called a completely reducible representation) is a linear representation of a group (mathematics), group or an algebra over a field, algebra that is a direct s ...
s.


Examples


U''n''

Of course, the group of matrices \mathbb_n is unipotent. Using the lower central series :\mathbb_n = \mathbb_n^ \supset \mathbb_n^ \supset \mathbb_n^ \supset \cdots \supset \mathbb_n^ = e where :\mathbb_n^ = mathbb_n,\mathbb_n/math> and \mathbb_n^ = mathbb_n, \mathbb_n^/math> there are associated unipotent groups. For example, on n = 4, the central series are the matrix groups :\mathbb_4 = \left\, \mathbb_4^ = \left\, \mathbb_4^ = \left\, and \mathbb_4^ = \left\ given some induced examples of unipotent groups.


Ga''n''

The additive group \mathbb_a is a unipotent group through the embedding :a \mapsto \begin 1 & a\\ 0 & 1 \end Notice the matrix multiplication gives :\begin 1 & a \\ 0 & 1 \end \cdot \begin 1 & b \\ 0 & 1 \end = \begin 1 & a + b \\ 0 & 1 \end hence this is a group embedding. More generally, there is an embedding \mathbb_a^n \to \mathbb_ from the map :(a_1,\ldots, a_n) \,\mapsto \begin 1 & a_1 & a_2 & \cdots & a_ &a_n \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots &1 & 0 \\ 0 & 0 & 0 & \cdots &0 & 1 \end Using scheme theory, \mathbb_a is given by the
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
:\mathcal:\textbf^ \to \textbf where :(X,\mathcal_X) \mapsto \mathcal_X(X)


Kernel of the Frobenius

Consider the functor \mathcal on the
subcategory In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, ...
\textbf/\mathbb_p, there is the subfunctor \alpha_p where :\alpha_p(X) = \ so it is given by the kernel of the
Frobenius endomorphism In commutative algebra and field theory (mathematics), field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative Ring (mathematics), rings with prime number, prime characteristic (algebra), ...
.


Classification of unipotent groups over characteristic 0

Over characteristic 0 there is a nice classification of unipotent algebraic groups with respect to nilpotent Lie algebras. Recall that a nilpotent Lie algebra is a subalgebra of some \mathfrak_n such that the iterated adjoint action eventually terminates to the zero-map. In terms of matrices, this means it is a subalgebra \mathfrak of \mathfrak_n, the matrices with a_ = 0 for i \leq j. Then, there is an
equivalence of categories In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two Category (mathematics), categories that establishes that these categories are "essentially the same". There are numerous examples of cate ...
of finite-dimensional nilpotent Lie algebras and unipotent algebraic groups.page 261 This can be constructed using the Baker–Campbell–Hausdorff series H(X,Y), where given a finite-dimensional nilpotent Lie algebra, the map :H:\mathfrak\times\mathfrak \to \mathfrak \text (X,Y)\mapsto H(X,Y) gives a Unipotent algebraic group structure on \mathfrak. In the other direction the exponential map takes any nilpotent square matrix to a unipotent matrix. Moreover, if ''U'' is a commutative unipotent group, the exponential map induces an
isomorphism In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
from the Lie algebra of ''U'' to ''U'' itself.


Remarks

Unipotent groups over an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra ...
of any given dimension can in principle be classified, but in practice the complexity of the classification increases rapidly with the dimension, so some tend to give up somewhere around dimension 6.


Unipotent radical

The unipotent radical of an algebraic group ''G'' is the set of unipotent elements in the radical of ''G''. It is a connected unipotent normal subgroup of ''G'', and contains all other such subgroups. A group is called reductive if its unipotent radical is trivial. If ''G'' is reductive then its radical is a torus.


Decomposition of algebraic groups

Algebraic groups can be decomposed into unipotent groups, multiplicative groups, and abelian varieties, but the statement of how they decompose depends upon the characteristic of their base field.


Characteristic 0

Over characteristic 0 there is a nice decomposition theorem of a commutative algebraic group G relating its structure to the structure of a
linear algebraic group In mathematics, a linear algebraic group is a subgroup of the group of invertible n\times n matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation M^TM = I_n ...
and an Abelian variety. There is a
short exact sequence In mathematics, an exact sequence is a sequence of morphisms between objects (for example, Group (mathematics), groups, Ring (mathematics), rings, Module (mathematics), modules, and, more generally, objects of an abelian category) such that the Im ...
of groupspage 8 :0 \to M\times U \to G \to A \to 0 where A is an abelian variety, M is of multiplicative type (meaning, M is, geometrically, a product of tori and algebraic groups of the form \mu_n) and U is a unipotent group.


Characteristic ''p''

When the characteristic of the base field is ''p'' there is an analogous statement for an algebraic group G: there exists a smallest subgroup H such that # G/H is a unipotent group # H is an extension of an abelian variety A by a group M of multiplicative type. # M is unique up to commensurability in G and A is unique up to isogeny.


Jordan decomposition

Any element ''g'' of a linear algebraic group over a perfect field can be written uniquely as the product ''g'' = ''g''''u''''g''''s'' of commuting unipotent and semisimple elements ''g''''u'' and ''g''''s''. In the case of the group GL''n''(C), this essentially says that any invertible
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
matrix is conjugate to the product of a diagonal matrix and an upper triangular one, which is (more or less) the multiplicative version of the Jordan–Chevalley decomposition. There is also a version of the Jordan decomposition for groups: any commutative linear algebraic group over a perfect field is the product of a unipotent group and a semisimple group.


See also

*
Reductive group In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation that has a finite kernel and is a ...
* Unipotent representation * Deligne–Lusztig theory


References

*A. Borel, ''Linear algebraic groups'', * * * * {{Matrix classes Ring theory Matrix theory Algebraic groups