Abelian Varieties
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined ''over'' that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those Complex torus, complex tori that can be holomorphic, holomorphically embedded into a complex projective space. Abelian varieties defined over algebraic number fields are a special case, which is important also from the viewpoint of number theory. L ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dedekind Domain
In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID. The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quintic Polynomial
In mathematics, a quintic function is a function of the form :g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, where , , , , and are members of a field, typically the rational numbers, the real numbers or the complex numbers, and is nonzero. In other words, a quintic function is defined by a polynomial of degree five. Because they have an odd degree, normal quintic functions appear similar to normal cubic functions when graphed, except they may possess one additional local maximum and one additional local minimum. The derivative of a quintic function is a quartic function. Setting and assuming produces a quintic equation of the form: :ax^5+bx^4+cx^3+dx^2+ex+f=0.\, Solving quintic equations in terms of radicals (''n''th roots) was a major problem in algebra from the 16th century, when cubic and quartic equations were solved, until the first half of the 19th century, when the impossibility of such a general solution was proved with the Abel–Ruffini theorem. Finding roots of a qui ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quartic Polynomial
In algebra, a quartic function is a function of the form :f(x)=ax^4+bx^3+cx^2+dx+e, where ''a'' is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A ''quartic equation'', or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form :ax^4+bx^3+cx^2+dx+e=0 , where . The derivative of a quartic function is a cubic function. Sometimes the term biquadratic is used instead of ''quartic'', but, usually, biquadratic function refers to a quadratic function of a square (or, equivalently, to the function defined by a quartic polynomial without terms of odd degree), having the form :f(x)=ax^4+cx^2+e. Since a quartic function is defined by a polynomial of even degree, it has the same infinite limit when the argument goes to positive or negative infinity. If ''a'' is positive, then the function increases to positive infinity at both ends; and thus the function has a global minimum. Likewise, if ''a'' is n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cubic Polynomial
In mathematics, a cubic function is a function (mathematics), function of the form f(x)=ax^3+bx^2+cx+d, that is, a polynomial function of degree three. In many texts, the ''coefficients'' , , , and are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain of a function, domain is restricted to the real numbers. Setting produces a cubic equation of the form :ax^3+bx^2+cx+d=0, whose solutions are called root of a function, roots of the function. The derivative of a cubic function is a quadratic function. A cubic function with real coefficients has either one or three real roots (Multiplicity (mathematics), which may not be distinct); all odd-degree polynomials with real coef ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Root
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4^2 = (-4)^2 = 16. Every nonnegative real number has a unique nonnegative square root, called the ''principal square root'' or simply ''the square root'' (with a definite article, see below), which is denoted by \sqrt, where the symbol "\sqrt" is called the '' radical sign'' or ''radix''. For example, to express the fact that the principal square root of 9 is 3, we write \sqrt = 3. The term (or number) whose square root is being considered is known as the ''radicand''. The radicand is the number or expression underneath the radical sign, in this case, 9. For non-negative , the principal square root can also be written in exponent notation, as x^. Every positive number has two square roots: \sqrt (which is positive) and -\sqrt (which i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Integral
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function which can be expressed in the form f(x) = \int_^ R \, dt, where is a rational function of its two arguments, is a polynomial of degree 3 or 4 with no repeated roots, and is a constant. In general, integrals in this form cannot be expressed in terms of elementary functions. Exceptions to this general rule are when has repeated roots, or when contains no odd powers of or if the integral is pseudo-elliptic. However, with the appropriate reduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the three Legendre canonical forms, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Function
In the mathematical field of complex analysis, elliptic functions are special kinds of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Those integrals are in turn named elliptic because they first were encountered for the calculation of the arc length of an ellipse. Important elliptic functions are Jacobi elliptic functions and the Weierstrass \wp-function. Further development of this theory led to hyperelliptic functions and modular forms. Definition A meromorphic function is called an elliptic function, if there are two \mathbb- linear independent complex numbers \omega_1,\omega_2\in\mathbb such that : f(z + \omega_1) = f(z) and f(z + \omega_2) = f(z), \quad \forall z\in\mathbb. So elliptic functions have two periods and are therefore doubly periodic functions. Period lattice and fundamental domain If f is an elliptic function with periods \omega_1,\omega_2 it also holds ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kodaira Dimension
In algebraic geometry, the Kodaira dimension measures the size of the canonical model of a projective variety . Soviet mathematician Igor Shafarevich in a seminar introduced an important numerical invariant of surfaces with the notation . Japanese mathematician Shigeru Iitaka extended it and defined the Kodaira dimension for higher dimensional varieties (under the name of canonical dimension), and later named it after Kunihiko Kodaira. The plurigenera The canonical bundle of a smooth algebraic variety ''X'' of dimension ''n'' over a field is the line bundle of ''n''-forms, :\,\!K_X = \bigwedge^n\Omega^1_X, which is the ''n''th exterior power of the cotangent bundle of ''X''. For an integer ''d'', the ''d''th tensor power of ''K''''X'' is again a line bundle. For ''d'' ≥ 0, the vector space of global sections ''H''0(''X'',''K''''X''''d'') has the remarkable property that it is a birational invariant of smooth projective varieties ''X''. That is, this vector space i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singular Point Of An Algebraic Variety
In the mathematical field of algebraic geometry, a singular point of an algebraic variety is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety that is not singular is said to be regular. An algebraic variety that has no singular point is said to be non-singular or smooth. The concept is generalized to smooth schemes in the modern language of scheme theory. Definition A plane curve defined by an implicit equation :F(x,y)=0, where is a smooth function is said to be ''singular'' at a point if the Taylor series of has order at least at this point. The reason for this is that, in differential calculus, the tangent at the point of such a curve is defined by the equation :(x-x_0)F'_x(x_0,y_0) + (y-y_0)F'_y(x_0,y_0)=0, whose left-hand side is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a property of arithmetic, e.g. or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division (mathematics), division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as noncommutative operations. The idea that simple operations, such as the multiplication (mathematics), multiplication and addition of numbers, are commutative was for many centuries implicitly assumed. Thus, this property was not named until the 19th century, when new algebraic structures started to be studied. Definition A binary operation * on a Set (mathematics), set ''S'' is ''commutative'' if x * y = y * x for all x,y \in S. An operat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |