HOME





Dedekind Domain
In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Of Integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often denoted by O_K or \mathcal O_K. Since any integer belongs to K and is an integral element of K, the ring \mathbb is always a subring of O_K. The ring of integers \mathbb is the simplest possible ring of integers. Namely, \mathbb=O_ where \mathbb is the field of rational numbers. And indeed, in algebraic number theory the elements of \mathbb are often called the "rational integers" because of this. The next simplest example is the ring of Gaussian integers \mathbb /math>, consisting of complex numbers whose real and imaginary parts are integers. It is the ring of integers in the number field \mathbb(i) of Gaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gabriel Lamé
Gabriel Lamé (22 July 1795 – 1 May 1870) was a French mathematician who contributed to the theory of partial differential equations by the use of curvilinear coordinates, and the mathematical theory of elasticity (for which linear elasticity and finite strain theory elaborate the mathematical abstractions). Biography Lamé was born in Tours, in today's ''département'' of Indre-et-Loire. He became well known for his general theory of curvilinear coordinates and his notation and study of classes of ellipse-like curves, now known as Lamé curves or superellipses, and defined by the equation: : \left, \,\,\^n + \left, \,\,\^n = 1 where ''n'' is any positive real number. He is also known for his running time analysis of the Euclidean algorithm, marking the beginning of computational complexity theory. In 1844, using Fibonacci numbers, he proved that when finding the greatest common divisor of integers ''a'' and ''b'', the algorithm runs in no more than 5''k'' steps, where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \sim on S, the of an element a in S is denoted /math> or, equivalently, to emphasize its equivalence relation \sim, and is defined as the set of all elements in S with which a is \sim-related. The definition of equivalence relations implies that the equivalence classes form a partition of S, meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S by \sim, and is denoted by S /. When the set S has some structure (such as a group operation or a topology) and the equivalence re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harold Stark
Harold Mead Stark (born August 6, 1939) is an Americans, American mathematician, specializing in number theory. He is best known for his solution of the Carl Friedrich Gauss, Gauss class number 1 problem, in effect Stark–Heegner theorem, correcting and completing the earlier work of Kurt Heegner, and for Stark's conjecture. More recently, he collaborated with Audrey Terras to study Ihara zeta function, zeta functions in graph theory. He is currently on the faculty of the University of California, San Diego. Stark received his bachelor's degree from the California Institute of Technology in 1961 and his PhD from the University of California, Berkeley in 1964. He was on the faculty at the University of Michigan from 1964 to 1968, at the Massachusetts Institute of Technology from 1968 to 1980, and at the University of California, San Diego from 1980 to the present. Stark was elected to the American Academy of Arts and Sciences in 1983 and to the United States National Academy of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alan Baker (mathematician)
Alan Baker (19 August 1939 – 4 February 2018) was an English mathematician, known for his work on effective methods in number theory, in particular those arising from transcendental number theory. Life Alan Baker was born in London on 19 August 1939. He attended Stratford School, Stratford Grammar School, East London, and his academic career started as a student of Harold Davenport, at University College London and later at Trinity College, Cambridge, where he received his PhD. He was a visiting scholar at the Institute for Advanced Study in 1970 when he was awarded the Fields Medal at the age of 31. In 1974 he was appointed Professor of Pure Mathematics at Cambridge University, a position he held until 2006 when he became an Emeritus. He was a fellow of Trinity College from 1964 until his death. His interests were in number theory, Transcendental number theory, transcendence, linear forms in logarithms, Effective results in number theory, effective methods, Diophantine geom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kurt Heegner
Kurt Heegner (; 16 December 1893 – 2 February 1965) was a German private scholar from Berlin, who specialized in radio engineering and mathematics. He is famous for his mathematical discoveries in number theory and, in particular, the Stark–Heegner theorem. Life and career Heegner was born and died in Berlin. In 1952, he published the Stark–Heegner theorem which he claimed was the solution to a classic number theory problem proposed by the great mathematician Gauss, the class number 1 problem. Heegner's work was not accepted for years, mainly due to his quoting of a portion of Heinrich Martin Weber's work that was known to be incorrect (though he never used this result in the proof). Heegner's proof was accepted as essentially correct after a 1967 announcement by Bryan Birch, and definitively resolved by a paper by Harold Stark that had been delayed in publication until 1969 (Stark had independently arrived at a similar proof, but disagrees with the common notion that h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heegner Number
In number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ..., a Heegner number (as termed by Conway and Guy) is a square-free positive integer ''d'' such that the imaginary quadratic field \Q\left sqrt\right/math> has class number 1. Equivalently, the ring of algebraic integers of \Q\left sqrt\right/math> has unique factorization. The determination of such numbers is a special case of the class number problem, and they underlie several striking results in number theory. According to the (Baker–) Stark–Heegner theorem there are precisely nine Heegner numbers: This result was conjectured by Gauss and proved up to minor flaws by Kurt Heegner in 1952. Alan Baker and Harold Stark independently proved the result in 1966, and Stark further indicated that the gap in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and professor of astronomy from 1807 until his death in 1855. While studying at the University of Göttingen, he propounded several mathematical theorems. As an independent scholar, he wrote the masterpieces '' Disquisitiones Arithmeticae'' and ''Theoria motus corporum coelestium''. Gauss produced the second and third complete proofs of the fundamental theorem of algebra. In number theory, he made numerous contributions, such as the composition law, the law of quadratic reciprocity and the Fermat polygonal number theorem. He also contributed to the theory of binary and ternary quadratic forms, the construction of the heptadecagon, and the theory of hypergeometric series. Due to Gauss' extensive and fundamental contributions to science ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Integer
In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. A complex number is called a quadratic integer if it is a root of some monic polynomial (a polynomial whose leading coefficient is 1) of degree two whose coefficients are integers, i.e. quadratic integers are algebraic integers of degree two. Thus quadratic integers are those complex numbers that are solutions of equations of the form : with and (usual) integers. When algebraic integers are considered, the usual integers are often called ''rational integers''. Common examples of quadratic integers are the square roots of rational integers, such as \sqrt, and the complex number i=\sqrt, which generates the Gaussian integers. Another common example is the non- real cubic root of unity \frac, which generates the Eisenstein integers. Quadratic integers occur in the solutions of many Diophantine equations, such as Pell's equations, and other questions related to integral quadrati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leonhard Euler
Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential discoveries in many other branches of mathematics, such as analytic number theory, complex analysis, and infinitesimal calculus. He also introduced much of modern mathematical terminology and Mathematical notation, notation, including the notion of a mathematical function. He is known for his work in mechanics, fluid dynamics, optics, astronomy, and music theory. Euler has been called a "universal genius" who "was fully equipped with almost unlimited powers of imagination, intellectual gifts and extraordinary memory". He spent most of his adult life in Saint Petersburg, Russia, and in Berlin, then the capital of Kingdom of Prussia, Prussia. Euler is credited for popularizing the Greek letter \pi (lowercase Pi (letter), pi) to denote Pi, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pierre De Fermat
Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory. He made notable contributions to analytic geometry, probability, and optics. He is best known for his Fermat's principle for light propagation and his Fermat's Last Theorem in number theory, which he described in a note at the margin of a copy of Diophantus' ''Arithmetica''. He was also a lawyer at the ''parlement'' of Toulouse, France. Biography Fermat was born in 1601 in Beaumont-de-Lomagne, France—the late 15th-century mansion where Fermat was born is now a museum. He was from Gascony, where his father, Dominique Fermat, was a wealthy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]