Two Sided Ideal
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, and more specifically in ring theory, an ideal of a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
is a special
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of its elements. Ideals generalize certain subsets of the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, such as the
even numbers In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The ...
or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
in a way similar to how, in
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, a
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
can be used to construct a
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For ex ...
. Among the integers, the ideals correspond one-for-one with the
non-negative integer In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
s: in this ring, every ideal is a
principal ideal In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ring. For instance, the
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
s of a ring are analogous to
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s, and the
Chinese remainder theorem In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
can be generalized to ideals. There is a version of unique prime factorization for the ideals of a
Dedekind domain In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily un ...
(a type of ring important in
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
). The related, but distinct, concept of an
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ...
in
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intr ...
is derived from the notion of ideal in ring theory. A
fractional ideal In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral do ...
is a generalization of an ideal, and the usual ideals are sometimes called integral ideals for clarity.


History

Ernst Kummer Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician. Skilled in applied mathematics, Kummer trained German army officers in ballistics; afterwards, he taught for 10 years in a '' gymnasium'', the German equivalent of h ...
invented the concept of
ideal number In number theory, an ideal number is an algebraic integer which represents an ideal in the ring of integers of a number field; the idea was developed by Ernst Kummer, and led to Richard Dedekind's definition of ideals for rings. An ideal in the r ...
s to serve as the "missing" factors in number rings in which unique factorization fails; here the word "ideal" is in the sense of existing in imagination only, in analogy with "ideal" objects in geometry such as points at infinity. In 1876,
Richard Dedekind Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. H ...
replaced Kummer's undefined concept by concrete sets of numbers, sets that he called ideals, in the third edition of
Dirichlet Johann Peter Gustav Lejeune Dirichlet (; ; 13 February 1805 – 5 May 1859) was a German mathematician. In number theory, he proved special cases of Fermat's last theorem and created analytic number theory. In Mathematical analysis, analysis, h ...
's book ''
Vorlesungen über Zahlentheorie (; German for ''Lectures on Number Theory'') is the name of several different textbooks of number theory. The best known was written by Peter Gustav Lejeune Dirichlet and Richard Dedekind, and published in 1863. Others were written by Leopold K ...
'', to which Dedekind had added many supplements. Later the notion was extended beyond number rings to the setting of polynomial rings and other commutative rings by
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
and especially
Emmy Noether Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
.


Definitions

Given a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
, a left ideal is a subset of that is a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of the
additive group An additive group is a group of which the group operation is to be thought of as ''addition'' in some sense. It is usually abelian, and typically written using the symbol + for its binary operation. This terminology is widely used with structu ...
of R that "absorbs multiplication from the left by elements of "; that is, I is a left ideal if it satisfies the following two conditions: # (I,+) is a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of , # For every r \in R and every , the product r x is in . In other words, a left ideal is a left
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since t ...
of , considered as a
left module In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since th ...
over itself. A right ideal is defined similarly, with the condition rx\in I replaced by . A two-sided ideal is a left ideal that is also a right ideal. If the ring is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, the three definitions are the same, and one talks simply of an ideal. In the non-commutative case, "ideal" is often used instead of "two-sided ideal". If is a left, right or two-sided ideal, the relation x \sim y if and only if :x-y\in I is an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
on , and the set of
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es forms a left, right or bi module denoted R/I and called the ''
quotient In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
'' of by . (It is an instance of a
congruence relation In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group (mathematics), group, ring (mathematics), ring, or vector space) that is compatible with the structure in the ...
and is a generalization of
modular arithmetic In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to mo ...
.) If the ideal is two-sided, R/I is a ring, and the function :R\to R/I that associates to each element of its equivalence class is a
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
that has the ideal as its
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learnin ...
. Conversely, the kernel of a ring homomorphism is a two-sided ideal. Therefore, ''the two-sided ideals are exactly the kernels of ring homomorphisms.''


Note on convention

By convention, a ring has the multiplicative identity. But some authors do not require a ring to have the multiplicative identity; i.e., for them, a ring is a rng. For a rng , a left ideal is a with the additional property that rx is in for every r \in R and every x \in I. (Right and two-sided ideals are defined similarly.) For a ring, an ideal (say a left ideal) is rarely a subring; since a subring shares the same multiplicative identity with the ambient ring , if were a subring, for every r \in R, we have r = r 1 \in I; i.e., I = R. The notion of an ideal does not involve associativity; thus, an ideal is also defined for
non-associative ring A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure ''A'' is a non-associative algebra over a field ''K'' if ...
s (often without the multiplicative identity) such as a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
.


Examples and properties

(For the sake of brevity, some results are stated only for left ideals but are usually also true for right ideals with appropriate notation changes.) * In a ring ''R'', the set ''R'' itself forms a two-sided ideal of ''R'' called the unit ideal. It is often also denoted by (1) since it is precisely the two-sided ideal generated (see below) by the unity . Also, the set \ consisting of only the additive identity 0''R'' forms a two-sided ideal called the zero ideal and is denoted by .Some authors call the zero and unit ideals of a ring ''R'' the trivial ideals of ''R''. Every (left, right or two-sided) ideal contains the zero ideal and is contained in the unit ideal. * An (left, right or two-sided) ideal that is not the unit ideal is called a proper ideal (as it is a
proper subset In mathematics, a set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset ...
). Note: a left ideal \mathfrak is proper if and only if it does not contain a unit element, since if u \in \mathfrak is a unit element, then r = (r u^) u \in \mathfrak for every . Typically there are plenty of proper ideals. In fact, if ''R'' is a
skew-field In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative ...
, then (0), (1) are its only ideals and conversely: that is, a nonzero ring ''R'' is a skew-field if (0), (1) are the only left (or right) ideals. (Proof: if x is a nonzero element, then the principal left ideal Rx (see below) is nonzero and thus Rx = (1); i.e., yx = 1 for some nonzero . Likewise, zy = 1 for some nonzero z. Then z = z(yx) = (zy)x = x.) * The even
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s form an ideal in the ring \mathbb of all integers, since the sum of any two even integers is even, and the product of any integer with an even integer is also even; this ideal is usually denoted by . More generally, the set of all integers divisible by a fixed integer n is an ideal denoted . In fact, every non-zero ideal of the ring \mathbb is generated by its smallest positive element, as a consequence of
Euclidean division In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than ...
, so \mathbb is a
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some author ...
. * The set of all
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s with real coefficients that are divisible by the polynomial x^2+1 is an ideal in the ring of all real-coefficient polynomials . * Take a ring R and positive integer . For each , the set of all n\times n
matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
with entries in R whose i-th row is zero is a right ideal in the ring M_n(R) of all n\times n matrices with entries in . It is not a left ideal. Similarly, for each , the set of all n\times n matrices whose j-th ''column'' is zero is a left ideal but not a right ideal. * The ring C(\mathbb) of all
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s f from \mathbb to \mathbb under
pointwise multiplication In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined ...
contains the ideal of all continuous functions f such that . Another ideal in C(\mathbb) is given by those functions that vanish for large enough arguments, i.e. those continuous functions f for which there exists a number L>0 such that f(x)=0 whenever . * A ring is called a
simple ring In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a sim ...
if it is nonzero and has no two-sided ideals other than . Thus, a skew-field is simple and a simple commutative ring is a field. The
matrix ring In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication. The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'') (alternat ...
over a skew-field is a simple ring. * If f: R \to S is a
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
, then the kernel \ker(f) = f^(0_S) is a two-sided ideal of . By definition, , and thus if S is not the zero ring (so ), then \ker(f) is a proper ideal. More generally, for each left ideal ''I'' of ''S'', the pre-image f^(I) is a left ideal. If ''I'' is a left ideal of ''R'', then f(I) is a left ideal of the subring f(R) of ''S'': unless ''f'' is surjective, f(I) need not be an ideal of ''S''; see also . * Ideal correspondence: Given a surjective ring homomorphism , there is a bijective order-preserving correspondence between the left (resp. right, two-sided) ideals of R containing the kernel of f and the left (resp. right, two-sided) ideals of S: the correspondence is given by I \mapsto f(I) and the pre-image . Moreover, for commutative rings, this bijective correspondence restricts to prime ideals, maximal ideals, and radical ideals (see the Types of ideals section for the definitions of these ideals). * If ''M'' is a left ''R''- module and S \subset M a subset, then the annihilator \operatorname_R(S) = \ of ''S'' is a left ideal. Given ideals \mathfrak, \mathfrak of a commutative ring ''R'', the ''R''-annihilator of (\mathfrak + \mathfrak)/\mathfrak is an ideal of ''R'' called the
ideal quotient In abstract algebra, if ''I'' and ''J'' are ideals of a commutative ring ''R'', their ideal quotient (''I'' : ''J'') is the set :(I : J) = \ Then (''I'' : ''J'') is itself an ideal in ''R''. The ideal quotient is viewed as a quotient because KJ ...
of \mathfrak by \mathfrak and is denoted by ; it is an instance of
idealizer In abstract algebra, the idealizer of a subsemigroup ''T'' of a semigroup ''S'' is the largest subsemigroup of ''S'' in which ''T'' is an Semigroup#Subsemigroups and ideals, ideal. Such an idealizer is given by :\mathbb_S(T)=\. In ring theory, if ...
in commutative algebra. * Let \mathfrak_i, i \in S be an
ascending chain In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( ref ...
of left ideals in a ring ''R''; i.e., S is a totally ordered set and \mathfrak_i \subset \mathfrak_j for each . Then the union \textstyle \bigcup_ \mathfrak_i is a left ideal of ''R''. (Note: this fact remains true even if ''R'' is without the unity 1.) * The above fact together with
Zorn's lemma Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least on ...
proves the following: if E \subset R is a possibly empty subset and \mathfrak_0 \subset R is a left ideal that is disjoint from ''E'', then there is an ideal that is maximal among the ideals containing \mathfrak_0 and disjoint from ''E''. (Again this is still valid if the ring ''R'' lacks the unity 1.) When R \ne 0, taking \mathfrak_0 = (0) and , in particular, there exists a left ideal that is maximal among proper left ideals (often simply called a maximal left ideal); see
Krull's theorem In mathematics, and more specifically in ring theory, Krull's theorem, named after Wolfgang Krull, asserts that a nonzero ring has at least one maximal ideal. The theorem was proved in 1929 by Krull, who used transfinite induction. The theore ...
for more. *An arbitrary union of ideals need not be an ideal, but the following is still true: given a possibly empty subset ''X'' of ''R'', there is the smallest left ideal containing ''X'', called the left ideal generated by ''X'' and is denoted by . Such an ideal exists since it is the intersection of all left ideals containing ''X''. Equivalently, RX is the set of all the (finite) left ''R''-linear combinations of elements of ''X'' over ''R'': RX = \(since such a span is the smallest left ideal containing ''X''.)If ''R'' does not have a unit, then the internal descriptions above must be modified slightly. In addition to the finite sums of products of things in ''X'' with things in ''R'', we must allow the addition of ''n''-fold sums of the form , and ''n''-fold sums of the form for every ''x'' in ''X'' and every ''n'' in the natural numbers. When ''R'' has a unit, this extra requirement becomes superfluous. A right (resp. two-sided) ideal generated by ''X'' is defined in the similar way. For "two-sided", one has to use linear combinations from both sides; i.e., RXR = \ . * A left (resp. right, two-sided) ideal generated by a single element ''x'' is called the principal left (resp. right, two-sided) ideal generated by ''x'' and is denoted by Rx (resp. ). The principal two-sided ideal RxR is often also denoted by . If X = \ is a finite set, then RXR is also written as . * There is a bijective correspondence between ideals and
congruence relation In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group (mathematics), group, ring (mathematics), ring, or vector space) that is compatible with the structure in the ...
s (equivalence relations that respect the ring structure) on the ring: Given an ideal I of a ring , let x\sim y if . Then \sim is a congruence relation on . Conversely, given a congruence relation \sim on , let . Then I is an ideal of .


Types of ideals

''To simplify the description all rings are assumed to be commutative. The non-commutative case is discussed in detail in the respective articles.'' Ideals are important because they appear as kernels of ring homomorphisms and allow one to define
factor ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space (linear algebra), quo ...
s. Different types of ideals are studied because they can be used to construct different types of factor rings. *
Maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
: A proper ideal is called a maximal ideal if there exists no other proper ideal with a proper subset of . The factor ring of a maximal ideal is a
simple ring In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a sim ...
in general and is a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
for commutative rings. *
Minimal ideal In the branch of abstract algebra known as ring theory, a minimal right ideal of a ring ''R'' is a non-zero right ideal which contains no other non-zero right ideal. Likewise, a minimal left ideal is a non-zero left ideal of ''R'' containing no o ...
: A nonzero ideal is called minimal if it contains no other nonzero ideal. * Zero ideal: the ideal \. * Unit ideal: the whole ring (being the ideal generated by 1). *
Prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
: A proper ideal I is called a prime ideal if for any a and b in , if ab is in , then at least one of a and b is in . The factor ring of a prime ideal is a
prime ring In abstract algebra, a nonzero ring ''R'' is a prime ring if for any two elements ''a'' and ''b'' of ''R'', ''arb'' = 0 for all ''r'' in ''R'' implies that either ''a'' = 0 or ''b'' = 0. This definition can be regarded as a simultaneous generaliz ...
in general and is an
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
for commutative rings. *
Radical ideal Radical (from Latin: ', root) may refer to: Politics and ideology Politics *Classical radicalism, the Radical Movement that began in late 18th century Britain and spread to continental Europe and Latin America in the 19th century *Radical politics ...
or
semiprime ideal In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduce ...
: A proper ideal is called radical or semiprime if for any in R, if is in for some , then is in . The factor ring of a radical ideal is a
semiprime ring In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as red ...
for general rings, and is a
reduced ring In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, ''x''2 = 0 implies ''x''  ...
for commutative rings. *
Primary ideal In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y'n'' is also an element of ''Q'', for some ''n'' > 0. ...
: An ideal is called a primary ideal if for all and in , if is in , then at least one of and is in for some
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
. Every prime ideal is primary, but not conversely. A semiprime primary ideal is prime. *
Principal ideal In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
: An ideal generated by ''one'' element. * Finitely generated ideal: This type of ideal is finitely generated as a module. *
Primitive ideal In mathematics, specifically ring theory, a left primitive ideal is the annihilator of a (nonzero) simple left module. A right primitive ideal is defined similarly. Left and right primitive ideals are always two-sided ideals. Primitive ideals ...
: A left primitive ideal is the annihilator of a
simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by John ...
left module. *
Irreducible ideal In mathematics, a proper ideal of a commutative ring is said to be irreducible if it cannot be written as the intersection of two strictly larger ideals.. Examples * Every prime ideal is irreducible. Let J and K be ideals of a commutative ring R ...
: An ideal is said to be irreducible if it cannot be written as an intersection of ideals that properly contain it. * Comaximal ideals: Two ideals , are said to be comaximal if x + y = 1 for some x \in I and . *
Regular ideal In mathematics, especially ring theory, a regular ideal can refer to multiple concepts. In operator theory, a right ideal (ring theory), ideal \mathfrak in a (possibly) non-unital ring ''A'' is said to be regular (or modular) if there exists an ele ...
: This term has multiple uses. See the article for a list. *
Nil ideal In mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if all of its elements is nilpotent, i.e for each a \in I exists natural number ''n'' for which a^n = 0. If all elements of a ring ...
: An ideal is a nil ideal if each of its elements is nilpotent. *
Nilpotent ideal In mathematics, more specifically ring theory, an ideal ''I'' of a ring ''R'' is said to be a nilpotent ideal if there exists a natural number ''k'' such that ''I'k'' = 0. By ''I'k'', it is meant the additive subgroup generated by the set o ...
: Some power of it is zero. *
Parameter ideal In mathematics, a system of parameters for a local Noetherian ring of Krull dimension ''d'' with maximal ideal ''m'' is a set of elements ''x''1, ..., ''x'd'' that satisfies any of the following equivalent conditions: # ''m'' is a minimal pri ...
: an ideal generated by a
system of parameters In mathematics, a system of parameters for a local ring, local Noetherian ring of Krull dimension ''d'' with maximal ideal ''m'' is a set of elements ''x''1, ..., ''x'd'' that satisfies any of the following equivalent conditions: # ''m'' is a M ...
. *
Perfect ideal In commutative algebra, a perfect ideal is a proper ideal I in a Noetherian ring R such that its grade equals the projective dimension of the associated quotient ring. \textrm(I)=\textrm\dim(R/I). A perfect ideal is unmixed. For a regular ...
: A proper ideal in a Noetherian ring R is called a perfect ideal if its
grade Grade most commonly refers to: * Grading in education, a measurement of a student's performance by educational assessment (e.g. A, pass, etc.) * A designation for students, classes and curricula indicating the number of the year a student has reach ...
equals the
projective dimension In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, keeping some of the main properties of free modules. Various equivalent characterizatio ...
of the associated quotient ring, . A perfect ideal is unmixed. *
Unmixed ideal ''Unmixed'' is the second album by house production duo Freemasons. It was released on 29 October 2007, with the lead single "Uninvited" being released one week earlier. The album is unique, as unlike most DJ/Producers, the tracks are all unmi ...
: A proper ideal in a Noetherian ring R is called an unmixed ideal (in height) if the height of is equal to the height of every
associated prime In abstract algebra, an associated prime of a module ''M'' over a ring ''R'' is a type of prime ideal of ''R'' that arises as an annihilator of a (prime) submodule of ''M''. The set of associated primes is usually denoted by \operatorname_R(M) ...
of R/I. (This is stronger than saying that R/I is
equidimensional Equidimensional may refer to: * Equidimensional (geology), used to describe the shape of three-dimensional objects *Equidimensionality In mathematics, especially in topology, equidimensionality is a property of a space that the local dimension is t ...
. See also
equidimensional ring In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal prime ideals. Defi ...
. Two other important terms using "ideal" are not always ideals of their ring. See their respective articles for details: *
Fractional ideal In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral do ...
: This is usually defined when R is a commutative domain with
quotient field In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fiel ...
K. Despite their names, fractional ideals are not necessarily ideals. A fractional ideal of R is an R-submodule of K for which there exists a non-zero r \in R such that rI \subseteq R. If the fractional ideal is contained entirely in R, then it is truly an ideal of R. *
Invertible ideal In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral doma ...
: Usually an invertible ideal is defined as a fractional ideal for which there is another fractional ideal such that . Some authors may also apply "invertible ideal" to ordinary ring ideals and with in rings other than domains.


Ideal operations

The sum and product of ideals are defined as follows. For \mathfrak and , left (resp. right) ideals of a ring ''R'', their sum is : \mathfrak+\mathfrak:=\, which is a left (resp. right) ideal, and, if \mathfrak, \mathfrak are two-sided, : \mathfrak \mathfrak:=\, i.e. the product is the ideal generated by all products of the form ''ab'' with ''a'' in \mathfrak and ''b'' in . Note \mathfrak + \mathfrak is the smallest left (resp. right) ideal containing both \mathfrak and \mathfrak (or the union ), while the product \mathfrak\mathfrak is contained in the intersection of \mathfrak and . The distributive law holds for two-sided ideals , * , * . If a product is replaced by an intersection, a partial distributive law holds: : \mathfrak \cap (\mathfrak + \mathfrak) \supset \mathfrak \cap \mathfrak + \mathfrak \cap \mathfrak where the equality holds if \mathfrak contains \mathfrak or \mathfrak. Remark: The sum and the intersection of ideals is again an ideal; with these two operations as join and meet, the set of all ideals of a given ring forms a
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
modular lattice In the branch of mathematics called order theory, a modular lattice is a lattice that satisfies the following self- dual condition, ;Modular law: implies where are arbitrary elements in the lattice,  ≤  is the partial order, and & ...
. The lattice is not, in general, a
distributive lattice In mathematics, a distributive lattice is a lattice (order), lattice in which the operations of join and meet distributivity, distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice o ...
. The three operations of intersection, sum (or join), and product make the set of ideals of a commutative ring into a
quantale In mathematics, quantales are certain partially ordered algebraic structures that generalize locales ( point free topologies) as well as various multiplicative lattices of ideals from ring theory and functional analysis ( C*-algebras, von Neu ...
. If \mathfrak, \mathfrak are ideals of a commutative ring ''R'', then \mathfrak \cap \mathfrak = \mathfrak \mathfrak in the following two cases (at least) * \mathfrak + \mathfrak = (1) * \mathfrak is generated by elements that form a
regular sequence In commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection. Definitions Giv ...
modulo . (More generally, the difference between a product and an intersection of ideals is measured by the
Tor functor In mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to const ...
: .) An integral domain is called a
Dedekind domain In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily un ...
if for each pair of ideals \mathfrak \subset \mathfrak, there is an ideal \mathfrak such that . It can then be shown that every nonzero ideal of a Dedekind domain can be uniquely written as a product of maximal ideals, a generalization of the
fundamental theorem of arithmetic In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 is prime or can be represented uniquely as a product of prime numbers, ...
.


Examples of ideal operations

In \mathbb we have : (n)\cap(m) = \operatorname(n,m)\mathbb since (n)\cap(m) is the set of integers that are divisible by both n and . Let R = \mathbb ,y,z,w/math> and let . Then, * \mathfrak + \mathfrak = (z,w, x+z, y+w) = (x, y, z, w) and \mathfrak + \mathfrak = (z, w, x) * \mathfrak\mathfrak = (z(x + z), z(y + w), w(x + z), w(y + w))= (z^2 + xz, zy + wz, wx + wz, wy + w^2) * \mathfrak\mathfrak = (xz + z^2, zw, xw + zw, w^2) * \mathfrak \cap \mathfrak = \mathfrak\mathfrak while \mathfrak \cap \mathfrak = (w, xz + z^2) \neq \mathfrak\mathfrak In the first computation, we see the general pattern for taking the sum of two finitely generated ideals, it is the ideal generated by the union of their generators. In the last three we observe that products and intersections agree whenever the two ideals intersect in the zero ideal. These computations can be checked using
Macaulay2 Macaulay2 is a free computer algebra system created by Daniel Grayson (from the University of Illinois at Urbana–Champaign) and Michael Stillman (from Cornell University) for computation in commutative algebra and algebraic geometry. Overview ...
.


Radical of a ring

Ideals appear naturally in the study of modules, especially in the form of a radical. : ''For simplicity, we work with commutative rings but, with some changes, the results are also true for non-commutative rings.'' Let ''R'' be a commutative ring. By definition, a
primitive ideal In mathematics, specifically ring theory, a left primitive ideal is the annihilator of a (nonzero) simple left module. A right primitive ideal is defined similarly. Left and right primitive ideals are always two-sided ideals. Primitive ideals ...
of ''R'' is the annihilator of a (nonzero) simple ''R''-module. The
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R- modules. It happens that substituting "left" in place of "right" in the definitio ...
J = \operatorname(R) of ''R'' is the intersection of all primitive ideals. Equivalently, : J = \bigcap_ \mathfrak. Indeed, if M is a simple module and ''x'' is a nonzero element in ''M'', then Rx = M and R/\operatorname(M) = R/\operatorname(x) \simeq M, meaning \operatorname(M) is a maximal ideal. Conversely, if \mathfrak is a maximal ideal, then \mathfrak is the annihilator of the simple ''R''-module . There is also another characterization (the proof is not hard): : J = \. For a not-necessarily-commutative ring, it is a general fact that 1 - yx is a
unit element In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the elemen ...
if and only if 1 - xy is (see the link) and so this last characterization shows that the radical can be defined both in terms of left and right primitive ideals. The following simple but important fact (
Nakayama's lemma In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and ...
) is built-in to the definition of a Jacobson radical: if ''M'' is a module such that , then ''M'' does not admit a
maximal submodule In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
, since if there is a maximal submodule , J \cdot (M/L) = 0 and so , a contradiction. Since a nonzero
finitely generated module In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts i ...
admits a maximal submodule, in particular, one has: : If JM = M and ''M'' is finitely generated, then . A maximal ideal is a prime ideal and so one has : \operatorname(R) = \bigcap_ \mathfrak \subset \operatorname(R) where the intersection on the left is called the nilradical of ''R''. As it turns out, \operatorname(R) is also the set of
nilpotent element In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister idempotent, was introduced by Benjamin Peirce i ...
s of ''R''. If ''R'' is an
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are ...
, then \operatorname(R) is nilpotent and . (Proof: first note the DCC implies J^n = J^ for some ''n''. If (DCC) \mathfrak \supsetneq \operatorname(J^n) is an ideal properly minimal over the latter, then J \cdot (\mathfrak/\operatorname(J^n)) = 0. That is, , a contradiction.)


Extension and contraction of an ideal

Let ''A'' and ''B'' be two
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
s, and let ''f'' : ''A'' → ''B'' be a
ring homomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
. If \mathfrak is an ideal in ''A'', then f(\mathfrak) need not be an ideal in ''B'' (e.g. take ''f'' to be the
inclusion Inclusion or Include may refer to: Sociology * Social inclusion, action taken to support people of different backgrounds sharing life together. ** Inclusion (disability rights), promotion of people with disabilities sharing various aspects of lif ...
of the ring of integers Z into the field of rationals Q). The extension \mathfrak^e of \mathfrak in ''B'' is defined to be the ideal in ''B'' generated by . Explicitly, : \mathfrak^e = \Big\ If \mathfrak is an ideal of ''B'', then f^(\mathfrak) is always an ideal of ''A'', called the contraction \mathfrak^c of \mathfrak to ''A''. Assuming ''f'' : ''A'' → ''B'' is a ring homomorphism, \mathfrak is an ideal in ''A'', \mathfrak is an ideal in ''B'', then: * \mathfrak is prime in ''B'' \Rightarrow \mathfrak^c is prime in ''A''. * \mathfrak^ \supseteq \mathfrak * \mathfrak^ \subseteq \mathfrak It is false, in general, that \mathfrak being prime (or maximal) in ''A'' implies that \mathfrak^e is prime (or maximal) in ''B''. Many classic examples of this stem from algebraic number theory. For example,
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
. In B = \mathbb\left\lbrack i \right\rbrack, the element 2 factors as 2 = (1 + i)(1 - i) where (one can show) neither of 1 + i, 1 - i are units in ''B''. So (2)^e is not prime in ''B'' (and therefore not maximal, as well). Indeed, (1 \pm i)^2 = \pm 2i shows that , , and therefore . On the other hand, if ''f'' is
surjective In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
and \mathfrak \supseteq \ker f then: * \mathfrak^=\mathfrak and . * \mathfrak is a
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
in ''A'' \Leftrightarrow \mathfrak^e is a prime ideal in ''B''. * \mathfrak is a
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
in ''A'' \Leftrightarrow \mathfrak^e is a maximal ideal in ''B''. Remark: Let ''K'' be a
field extension In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ...
of ''L'', and let ''B'' and ''A'' be the rings of integers of ''K'' and ''L'', respectively. Then ''B'' is an
integral extension In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over a subring ''A'' of ''B'' if ''b'' is a root of some monic polynomial over ''A''. If ''A'', ''B'' are fields, then the notions of "integral over" and ...
of ''A'', and we let ''f'' be the
inclusion map In mathematics, if A is a subset of B, then the inclusion map is the function \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota(x)=x. An inclusion map may also be referred to as an inclu ...
from ''A'' to ''B''. The behaviour of a
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
\mathfrak = \mathfrak of ''A'' under extension is one of the central problems of
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
. The following is sometimes useful: a prime ideal \mathfrak is a contraction of a prime ideal if and only if . (Proof: Assuming the latter, note \mathfrak^e B_ = B_ \Rightarrow \mathfrak^e intersects , a contradiction. Now, the prime ideals of B_ correspond to those in ''B'' that are disjoint from . Hence, there is a prime ideal \mathfrak of ''B'', disjoint from , such that \mathfrak B_ is a maximal ideal containing . One then checks that \mathfrak lies over . The converse is obvious.)


Generalizations

Ideals can be generalized to any
monoid object In category theory, a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) in a monoidal category is an object ''M'' together with two morphisms * ''μ'': ''M'' ⊗ ''M'' → ''M'' called ''multiplication'', * ''η ...
, where R is the object where the
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
structure has been forgotten. A left ideal of R is a
subobject In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory ...
I that "absorbs multiplication from the left by elements of "; that is, I is a left ideal if it satisfies the following two conditions: # I is a
subobject In category theory, a branch of mathematics, a subobject is, roughly speaking, an object that sits inside another object in the same category. The notion is a generalization of concepts such as subsets from set theory, subgroups from group theory ...
of R # For every r \in (R,\otimes) and every , the product r \otimes x is in . A right ideal is defined with the condition "" replaced by "'". A two-sided ideal is a left ideal that is also a right ideal, and is sometimes simply called an ideal. When R is a commutative monoid object respectively, the definitions of left, right, and two-sided ideal coincide, and the term ideal is used alone.


See also

*
Modular arithmetic In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to mo ...
*
Noether isomorphism theorem In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship among Quotient (universal algebra), quotients, homomorphisms, and subobjects. Versio ...
*
Boolean prime ideal theorem In mathematics, the Boolean prime ideal theorem states that Ideal (order theory), ideals in a Boolean algebra (structure), Boolean algebra can be extended to Ideal (order theory)#Prime ideals , prime ideals. A variation of this statement for Filte ...
*
Ideal theory In mathematics, ideal theory is the theory of ideal (ring theory), ideals in commutative rings. While the notion of an ideal exists also for Noncommutative ring, non-commutative rings, a much more substantial theory exists only for commutative rin ...
*
Ideal (order theory) In mathematics, mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a ...
*
Ideal norm In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ide ...
*
Splitting of prime ideals in Galois extensions In mathematics, the interplay between the Galois group ''G'' of a Galois extension ''L'' of a number field ''K'', and the way the prime ideals ''P'' of the ring of integers ''O'K'' factorise as products of prime ideals of ''O'L'', provide ...
*
Ideal sheaf In algebraic geometry and other areas of mathematics, an ideal sheaf (or sheaf of ideals) is the global analogue of an ideal (ring theory), ideal in a ring (mathematics), ring. The ideal sheaves on a geometric object are closely connected to its sub ...


Notes


References

* * * * * *


External links

* {{Authority control Algebraic structures Commutative algebra Algebraic number theory