Transdifferentiation, also known as lineage reprogramming, is the process in which one mature
somatic cell
In cellular biology, a somatic cell (), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Somatic cells compose the body of an organism ...
is transformed into another mature somatic cell without undergoing an intermediate
pluripotent
Cell potency is a cell's ability to differentiate into other cell types.
The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum ...
state or
progenitor cell
A progenitor cell is a biological cell that can differentiate into a specific cell type. Stem cells and progenitor cells have this ability in common. However, stem cells are less specified than progenitor cells. Progenitor cells can only diffe ...
type.(a process where one type of fully developed body cell changes directly into another type of body cell, without the cell turning into a stem cell first)
It is a type of
metaplasia
Metaplasia () is the transformation of a cell type to another cell type. The change from one type of cell to another may be part of a normal maturation process, or caused by some sort of abnormal stimulus. In simplistic terms, it is as if the ...
, which includes all cell fate switches, including the interconversion of stem cells.(it’s considered as a form of metaplasia, which refers to any change from one kind of cell to another, including changes involving stem cells.) Current uses of transdifferentiation include disease modeling and
drug discovery
In the fields of medicine, biotechnology, and pharmacology, drug discovery is the process by which new candidate medications are discovered.
Historically, drugs were discovered by identifying the active ingredient from traditional remedies or ...
and in the future may include
gene therapy
Gene therapy is Health technology, medical technology that aims to produce a therapeutic effect through the manipulation of gene expression or through altering the biological properties of living cells.
The first attempt at modifying human DNA ...
and
regenerative medicine
Regenerative medicine deals with the "process of replacing, engineering or regenerating human or animal cells, tissues or organs to restore or establish normal function". This field holds the promise of engineering damaged tissues and organs by st ...
.(transdifferentiation is currently used in areas like understanding diseases, testing new drugs, and possibly future treatments such as gene therapy and tissue repair).
The term 'transdifferentiation' was originally coined by Selman and Kafatos in 1974 to describe a change in cell properties as cuticle-producing cells became salt-secreting cells in
silk moths undergoing
metamorphosis
Metamorphosis is a biological process by which an animal physically develops including birth transformation or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and different ...
.
Discovery
Davis et al. 1987 reported the first instance (sight) of transdifferentiation where a cell changed from one adult cell type to another. Forcing mouse embryonic
fibroblast
A fibroblast is a type of cell (biology), biological cell typically with a spindle shape that synthesizes the extracellular matrix and collagen, produces the structural framework (Stroma (tissue), stroma) for animal Tissue (biology), tissues, and ...
s to express
MyoD
MyoD, also known as myoblast determination protein 1, is a protein in animals that plays a major role in regulating muscle differentiation. MyoD, which was discovered in the laboratory of Harold M. Weintraub, belongs to a family of proteins kn ...
was found to be
sufficient to turn those cells into
myoblasts.
Natural examples
The only known instances where adult cells change directly from one lineage to another occurs in the species ''
Turritopsis dohrnii'' (also known as the immortal jellyfish) and ''
Turritopsis nutricula
''Turritopsis nutricula'' is a small hydrozoan that once reaching adulthood, can transfer its cells back to childhood. This Adaptation, adaptive trait likely evolved in order to extend the life of the individual. Several different species of the ...
''.
In
newt
A newt is a salamander in the subfamily Pleurodelinae. The terrestrial juvenile phase is called an eft. Unlike other members of the family Salamandridae, newts are semiaquatic, alternating between aquatic and terrestrial habitats. Not all aqua ...
s, when the eye lens is removed, pigmented
epithelial
Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
cells de-differentiate and then redifferentiate into the lens cells. Vincenzo Colucci described this phenomenon in 1891 and Gustav Wolff described the same thing in 1894; the priority issue is examined in Holland (2021).
In humans and mice, it has been demonstrated that alpha cells in the
pancreas
The pancreas (plural pancreases, or pancreata) is an Organ (anatomy), organ of the Digestion, digestive system and endocrine system of vertebrates. In humans, it is located in the abdominal cavity, abdomen behind the stomach and functions as a ...
can spontaneously switch fate and transdifferentiate into beta cells. This has been demonstrated for both healthy and diabetic human and mouse
pancreatic islets
The pancreatic islets or islets of Langerhans are the regions of the pancreas that contain its endocrine (hormone-producing) cells, discovered in 1869 by German pathological anatomist Paul Langerhans. The pancreatic islets constitute 1–2% o ...
. While it was previously believed that
oesophageal
The esophagus (American English), oesophagus (British English), or œsophagus (Œ, archaic spelling) (American and British English spelling differences#ae and oe, see spelling difference) all ; : ((o)e)(œ)sophagi or ((o)e)(œ)sophaguses), c ...
cells were developed from the transdifferentiation of smooth muscle cells, that has been shown to be false.
Induced and therapeutic examples
The first example of functional transdifferentiation has been provided by Ferber et al. by inducing a shift in the developmental fate of cells in the liver and converting them into '
pancreatic beta-cell-like' cells. The cells induced a wide, functional and long-lasting transdifferentiation process that reduced the effects of
hyperglycemia
Hyperglycemia is a condition where unusually high amount of glucose is present in blood. It is defined as blood glucose level exceeding 6.9 mmol/L (125 mg/dL) after fasting for 8 hours or 10 mmol/L (180 mg/dL) 2 hours after eating.
Blood gluc ...
in diabetic mice.
[Sarah Ferber, Amir Halkin, Hofit Cohen, Idit Ber, Yulia Einav, Iris Goldberg, Iris Barshack, Rhona Seijffers, Juri Kopolovic, Nurit Kaiser & Avraham Karasik (2000) -]
Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia
Moreover, the trans-differentiated beta-like cells were found to be resistant to the
autoimmune
In immunology, autoimmunity is the system of immune responses of an organism against its own healthy cells, tissues and other normal body constituents. Any disease resulting from this type of immune response is termed an " autoimmune disease" ...
attack that characterizes
type 1 diabetes.
The second step was to undergo transdifferentiation in human specimens. By transducing liver cells with a single gene, Sapir et al. were able to induce human liver cells to transdifferentiate into human beta cells.
[Tamar Sapir, Keren Shternhall, Irit Meivar-Levy, Tamar Blumenfeld, Hamutal Cohen, Ehud Skutelsky, Smadar Eventov-Friedman, Iris Barshack, Iris Goldberg, Sarah Pri-Chen, Lya Ben-Dor, Sylvie Polak-Charcon, Avraham Karasik, Ilan Shimon, Eytan Mor, and Sarah Ferber (2005]
Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells
/ref>
This approach has been demonstrated in mice, rat, xenopus
''Xenopus'' () (Gk., ξενος, ''xenos'' = strange, πους, ''pous'' = foot, commonly known as the clawed frog) is a genus of highly aquatic frogs native to sub-Saharan Africa. Twenty species are currently described with ...
and human tissues.
Schematic model of the hepatocyte
A hepatocyte is a cell of the main parenchymal tissue of the liver. Hepatocytes make up 80% of the liver's mass.
These cells are involved in:
* Protein synthesis
* Protein storage
* Transformation of carbohydrates
* Synthesis of cholesterol, bi ...
-to-beta cell transdifferentiation process. Hepatocytes are obtained by liver biopsy from diabetic patient, cultured and expanded ex vivo, transduced with a PDX1 virus, transdifferentiated into functional insulin
Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main Anabolism, anabolic hormone of the body. It regulates the metabol ...
-producing beta cells, and transplanted back into the patient.
Granulosa and theca cells in the ovaries
The ovary () is a gonad in the female reproductive system that produces ova; when released, an ovum travels through the fallopian tube/oviduct into the uterus. There is an ovary on the left and the right side of the body. The ovaries are endocr ...
of adult female mice can transdifferentiate to Sertoli and Leydig cells via induced knockout of the FOXL2 gene. Similarly, Sertoli cells in the testes
A testicle or testis ( testes) is the gonad in all male bilaterians, including humans, and is homologous to the ovary in females. Its primary functions are the production of sperm and the secretion of androgens, primarily testosterone.
The ...
of adult male mice can transdifferentiate to granulosa cells via induced knockout of the DMRT1 gene.
Methods
Lineage-instructive approach
In this approach, transcription factor
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription (genetics), transcription of genetics, genetic information from DNA to messenger RNA, by binding t ...
s from progenitor cell
A progenitor cell is a biological cell that can differentiate into a specific cell type. Stem cells and progenitor cells have this ability in common. However, stem cells are less specified than progenitor cells. Progenitor cells can only diffe ...
s of the target cell type are transfected into a somatic cell to induce transdifferentiation. There exists two different means of determining which transcription factors to use: by starting with a large pool and narrowing down factors one by one or by starting with one or two and adding more. One theory to explain the exact specifics is that ectopic Transcriptional factors direct the cell to an earlier progenitor state and then redirects it towards a new cell type. Rearrangement of the chromatin
Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important r ...
structure via DNA methylation
DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter (genetics), promoter, DNA methylati ...
or histone
In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes ...
modification may play a role as well. Here is a list of in vitro examples and in vivo examples. In vivo
Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, an ...
methods of transfecting specific mouse cells utilize the same kinds of vectors as in vitro
''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
experiments, except that the vector is injected into a specific organ. Zhou et al. (2008) injected Ngn3, Pdx1 and Mafa into the dorsal splenic lobe (pancreas) of mice to reprogram pancreatic exocrine cells into β-cells in order to ameliorate hyperglycaemia.
Initial epigenetic activation phase approach
Somatic cells are first transfected with pluripotent reprogramming factors temporarily ( Oct4, Sox2, Nanog, etc.) before being transfected with the desired inhibitory or activating factors. Here is a list of examples in vitro.
Pharmacological agents
The DNA methylation inhibitor, 5-azacytidine is also known to promote phenotypic transdifferentiation of cardiac cells to skeletal myoblasts.
In prostate cancer
Prostate cancer is the neoplasm, uncontrolled growth of cells in the prostate, a gland in the male reproductive system below the bladder. Abnormal growth of the prostate tissue is usually detected through Screening (medicine), screening tests, ...
, treatment with androgen receptor
The androgen receptor (AR), also known as NR3C4 (nuclear receptor subfamily 3, group C, member 4), is a type of nuclear receptor that is activated by binding any of the androgenic hormones, including testosterone and dihydrotestosterone, in th ...
targeted therapies induces neuroendocrine transdifferentiation in a subset of patients. No standard of care exists for these patients, and those diagnosed with treatment induced neuroendocrine carcinoma are typically treated palliatively.
Mechanism of action
The transcription factors serve as a short term trigger to an irreversible process. The transdifferentiation liver cells observed 8 months after one single injection of pdx1.
The ectopic transcription factors turn off the host repertoire of gene expression in each of the cells. However, the alternate desired repertoire is being turned on only in a subpopulation of predisposed cells. Despite the massive dedifferentiation – lineage tracing approach indeed demonstrates that transdifferentiation originates in adult cells.
Mogrify algorithm
Determining the unique set of cellular factors that is needed to be manipulated for each cell conversion is a long and costly process that involved much trial and error. As a result, this first step of identifying the key set of cellular factors for cell conversion is the major obstacle researchers face in the field of cell reprogramming. An international team of researchers have developed an algorithm, called Mogrify(1), that can predict the optimal set of cellular factors required to convert one human cell type to another. When tested, Mogrify was able to accurately predict the set of cellular factors required for previously published cell conversions correctly. To further validate Mogrify's predictive ability, the team conducted two novel cell conversions in the laboratory using human cells, and these were successful in both attempts solely using the predictions of Mogrify. Mogrify has been made available online for other researchers and scientists.
Issues
Evaluation
When examining transdifferentiated cells, it is important to look for markers of the target cell type and the absence of donor cell markers which can be accomplished using green fluorescent protein or immunodetection. It is also important to examine the cell function, epigenome
In biology, the epigenome of an organism is the collection of chemical changes to its DNA and histone proteins that affects when, where, and how the DNA is expressed; these changes can be passed down to an organism's offspring via transgenerat ...
, transcriptome
The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The ...
, and proteome
A proteome is the entire set of proteins that is, or can be, expressed by a genome, cell, tissue, or organism at a certain time. It is the set of expressed proteins in a given type of cell or organism, at a given time, under defined conditions. P ...
profiles. Cells can also be evaluated based upon their ability to integrate into the corresponding tissue in vivo and functionally replace its natural counterpart. In one study, transdifferentiating tail-tip fibroblasts
A fibroblast is a type of biological cell typically with a spindle shape that synthesizes the extracellular matrix and collagen, produces the structural framework ( stroma) for animal tissues, and plays a critical role in wound healing. Fibrobla ...
into hepatocyte-like cells using transcription factors Gata4, Hnf1α and Foxa3, and inactivation of p19(Arf) restored hepatocyte-like liver functions in only half of the mice using survival as a means of evaluation.
Transition from mouse to human cells
Generally transdifferentiation that occurs in mouse cells does not translate in effectiveness or speediness in human cells. Pang et al. found that while transcription factors Ascl1, Brn2 and Myt1l turned mouse cells into mature neurons, the same set of factors only turned human cells into immature neurons. However, the addition of NeuroD1 was able to increase efficiency and help cells reach maturity.
Order of transcription factor expression
The order of expression of transcription factors can direct the fate of the cell. Iwasaki et al. (2006) showed that in hematopoietic lineages, the expression timing of Gata-2 and (C/EBPalpha) can change whether or not a lymphoid-committed progenitors can differentiate into granulocyte
Granulocytes are cells in the innate immune system characterized by the presence of specific granules in their cytoplasm. Such granules distinguish them from the various agranulocytes. All myeloblastic granulocytes are polymorphonuclear, that i ...
/monocyte
Monocytes are a type of leukocyte or white blood cell. They are the largest type of leukocyte in blood and can differentiate into macrophages and monocyte-derived dendritic cells. As a part of the vertebrate innate immune system monocytes also ...
progenitor, eosinophil
Eosinophils, sometimes called eosinophiles or, less commonly, acidophils, are a variety of white blood cells and one of the immune system components responsible for combating multicellular parasites and certain infections in vertebrates. Along wi ...
, basophil
Basophils are a type of white blood cell
White blood cells (scientific name leukocytes), also called immune cells or immunocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and f ...
or bipotent basophil
Basophils are a type of white blood cell
White blood cells (scientific name leukocytes), also called immune cells or immunocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and f ...
/mast cell
A mast cell (also known as a mastocyte or a labrocyte) is a resident cell of connective tissue that contains many granules rich in histamine and heparin. Specifically, it is a type of granulocyte derived from the myeloid stem cell that is a p ...
progenitor lineages.
Immunogenicity
It has been found for induced pluripotent stem cells that when injected into mice, the immune system of the synergeic mouse rejected the teratomas forming. Part of this may be because the immune system recognized epigenetic markers of specific sequences of the injected cells. However, when embryonic stem cells were injected, the immune response was much lower. Whether or not this will occur within transdifferentiated cells remains to be researched.
Method of transfection
In order to accomplish transfection
Transfection is the process of deliberately introducing naked or purified nucleic acids into eukaryotic cells. It may also refer to other methods and cell types, although other terms are often preferred: " transformation" is typically used to des ...
, one may use integrating viral vector
A viral vector is a modified virus designed to gene delivery, deliver genetic material into cell (biology), cells. This process can be performed inside an organism or in cell culture. Viral vectors have widespread applications in basic research, ...
s such as lentiviruses or retrovirus
A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. After invading a host cell's cytoplasm, the virus uses its own reverse transcriptase e ...
es, non-integrating vectors such as Sendai virus
''Murine respirovirus'', formerly ''Sendai virus'' (SeV) and previously also known as murine parainfluenza virus type 1 or hemagglutinating virus of Japan (HVJ), is an Viral envelope, enveloped, 150-200 nm–diameter, negative sense, single ...
es or adenoviruses
Adenoviruses (members of the family ''Adenoviridae'') are medium-sized (90–100 nm), nonenveloped (without an outer lipid bilayer) viruses with an icosahedral nucleocapsid containing a double-stranded DNA genome. Their name derives from the ...
, microRNA
Micro ribonucleic acid (microRNA, miRNA, μRNA) are small, single-stranded, non-coding RNA molecules containing 21–23 nucleotides. Found in plants, animals, and even some viruses, miRNAs are involved in RNA silencing and post-transcr ...
s and a variety of other methods including using proteins and plasmid
A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria and ...
s; one example is the non-viral delivery of transcription factor-encoding plasmids with a polymeric carrier to elicit neuronal transdifferentiation of fibroblasts. When foreign molecules enter cells, one must take into account the possible drawbacks and potential to cause tumorous growth. Integrating viral vectors have the chance to cause mutations when inserted into the genome. One method of going around this is to excise the viral vector once reprogramming has occurred, an example being Cre-Lox recombination Non-integrating vectors have other issues concerning efficiency of reprogramming and also the removal of the vector. Other methods are relatively new fields and much remains to be discovered.
Differences with pluripotent reprogramming
*Almost all factors that reprogram cells into pluripotency have been discovered and can turn a wide variety of cells back into induced pluripotent stem cells (iPSCs). However, many of the reprogramming factors that can change a cell's lineage have not been discovered and these factors apply only for that specific lineage.
*The final products of transdifferentiated cells are capable of being used for clinical studies, but iPSCs must be differentiated.
*It may become possible in the future to use transdifferentiation in vivo, whereas pluripotent reprogramming may cause teratomas in vivo.
*Transdifferentiated cells will require less epigenetic marks to be reset, whereas pluripotent reprogramming requires nearly all to be removed, which may become an issue during redifferentiation.
*Transdifferentiation is geared towards moving between similar lineages, whereas pluripotent reprogramming has unlimited potential.
*Pluripotent cells are capable of self-renewal and often go through many cell passages, which increases the chance of accumulating mutations. Cell culture may also favor cells that are adapted for surviving under those conditions, as opposed to inside an organism. Transdifferentiation requires fewer cell passages and would reduce the chance of mutations.
*Transdifferentiation can also be much more efficient than pluripotency reprogramming due to the extra step involved in the latter process.
*Both pluripotent and transdifferentiated cells use adult cells, thus starting cells are very accessible, whereas human embryonic stem cells require that one navigate legal loopholes and delve into the morality of stem cell research debate.
See also
* Epigenetics
In biology, epigenetics is the study of changes in gene expression that happen without changes to the DNA sequence. The Greek prefix ''epi-'' (ἐπι- "over, outside of, around") in ''epigenetics'' implies features that are "on top of" or "in ...
* Induced pluripotent stem cell
Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka and Kazutoshi Takahashi in Kyoto, Jap ...
* Induced stem cells
Induce may refer to:
* Induced consumption
* Induced innovation
* Induced character
* Induced coma
* Induced menopause
* Induced metric
* Induced path
* Induced topology
* Induce (musician), American musician
* Labor induction
Labor indu ...
* Reprogramming
References
{{Authority control
Biological processes
Induced stem cells
Developmental biology concepts