Topological Polymers
   HOME

TheInfoList



OR:

Topological polymers may refer to a polymeric molecule that possesses unique spatial features, such as linear, branched, or cyclic architectures. It could also refer to polymer networks that exhibit distinct
topologies In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
owing to special crosslinkers. When self-assembling or
crosslinking Cross-linking may refer to *Cross-link, a chemical bond of one polymer chain to another *Corneal collagen cross-linking, a parasurgical treatment for corneal ectasia and keratoconus {{Disambiguation ...
in a certain way, polymeric species with simple topological identity could also demonstrate complicated topological structures in a larger spatial scale. Topological structures, along with the chemical composition, determine the macroscopic physical properties of polymeric materials.


Definition

Topological polymers, or polymer topology, could refer to a single polymeric chain with topological information or a polymer network with special junctions or connections. When the topology of a polymeric chain or network is investigated, the exact chemical composition is usually neglected, but the way of junctions and connections is more considered. Various topological structures, on one hand, could potentially change the interactions (
van der Waals interaction In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and t ...
,
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing ...
ing, etc.) between each of the polymer chain. On the other hand, topology also determines the hierarchical structures within a polymer network, from a microscopic level (<1 nm) to a macroscopic level (10-100 nm), which eventually affords polymeric materials with completely different physical properties, such as mechanical property,
glass transition temperature The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rub ...
, gelation concentration.


Topological polymer classification

In early 1950s, Paul J. Flory was the pioneer who developed theories to explain topology within a polymer network, and the structure-property relationships between the topology and the mechanical property, like elasticity, was initially established afterwards. Later in 1980s, Bertrand Duplantier developed theories to describe any polymer network topologies using statistical mechanics, which could help to derive topology-dependent
critical exponent Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine * Critical juncture, a discontinuous change studied in the social sciences. * Critical Software, a company specializing i ...
s in a polymer network. In early 2000s, Yasuyuki Tezuka and coworkers were the first ones that systematically described a single molecular chain with topological information. Adapted from Y. Tezuka and coworker's description of a topological polymer chain with more generalized rules, the topology notation rules are to be introduced first, followed by three classical classifications, including linear, branched and cyclic polymer topologies, and they are classified in a table reorganized and redrawn from Y. Tezuka and coworker (Copyright, 2001 by American Chemical Society). A general polymer chain could be generalized into an
undirected graph In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' v ...
with
nodes In general, a node is a localized swelling (a "knot") or a point of intersection (a vertex). Node may refer to: In mathematics *Vertex (graph theory), a vertex in a mathematical graph *Vertex (geometry), a point where two or more curves, lines, ...
(vertices or points) and
edges Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by ...
(lines or links) based on
graph theory In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
. In a graph theory topology, two sets of nodes are present, termini and junctions. The quantity ‘
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathemati ...
’ represents the number of edges linked to each node, if the degree of a certain node is larger than 3 (including 3), the node is a junction, while the degree of a node is 1, the node is a terminus. There are no nodes with a degree of 2 since they could be generalized into their adjacent nodes. As for a certain polymer, as long as the topology is fixed, a specific topology notation could be generated using the following rules: A general polymer chain notation could be expressed as: P_m(x,y) _1(s_,s_,..),s_2(s_,s_,...),.../math> # Capitalized letter P represents the main topology within a polymer, A represents linear or branched topology, and Roman numerals are used to represent the number of rings in the polymer chain, I represents one cycle, II represents two cycles, III, IV, V, etc. represents three, four, five cycles and so on. # m represents the number of nodes in the graph theory topology, x represents the number of termini and y represents the number of junctions, and m=x+yis always true. # If P_m(x,y) could represent an exclusive topology, there is no need to add more information to specify the notation. However, if multiple possibilities are present, extra information is needed. i. For branched topology, a main chain is first selected, and the degree of each junction nodes along the chain should be noted as s_iconnected by a hyphen. If there is a side chain on any of the main chain node, s_ should be noted with a bracket following the main chain notation. ii. For monocyclic topology, the outward branch should be firstly identified with the number of branches at each of the junctions as s_iconnected by a hyphen. Then the topology of each branch should be identified using the rule in i as s_using a bracket following the s_inotations. iii. For multicyclic topology, superscript letter (a, b, c and so on) is used to describe internal connections within an existing ring.


Linear

Linear topology is a special topological structure that exclusively has two nodes as the termini without any junction nodes. High-density polyethylene (HDPE) could be regarded as a linear polymer chain with very small amount of branching, the linear topology has been listed below: Linear chains capable of forming intra-chain interactions can fold into a wide range of circuit topologies. Examples include biopolymers such as
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respon ...
s and
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main ...
s.


Branched

When side chains are introduced into a linear polymer chain, a branched topology forms. Linear polymers are special types of branched polymers with zero junction nodes, but they are cataloged into two classifications to distinguish their special macroscopic properties. Branched polymers with the same molecular weight usually demonstrate different physical properties due to that branching could generally decrease the
van der Waals interactions A van is a type of road vehicle used for transporting goods or people. Depending on the type of van, it can be bigger or smaller than a pickup truck and SUV, and bigger than a common car. There is some varying in the scope of the word across th ...
between each of the polymer chain. Several well-known branched polymers have been synthesized, such as star-shape polymer, comb polymer and
dendrimer Dendrimers are highly ordered, branched polymeric molecules. Synonymous terms for dendrimer include arborols and cascade molecules. Typically, dendrimers are symmetric about the core, and often adopt a spherical three-dimensional morphology. The ...
. Selected branched topologies have been listed below:


Cyclic

Cyclic structures are of interest topologically because there are no termini in this topology and the physical property could be dramatically different as a result of the restriction of the termini.


Monocyclic

Monocyclic topology is a topological structure with only one cycle in the polymer chain, and it could be coupled with outward branching structures. Selected monocyclic topologies have been listed below:


Bicyclic

Bicyclic topology refers to a structure that two cycles connected internally or externally are present in a polymer chain. Selected bicyclic topologies are listed below:


Polycyclic

Similar to monocyclic and bicyclic topologies, polycyclic topologies possess more cycles in a polymer chain and are more synthetically challenging. Selected polycyclic (tricyclic) topologies are listed below:


Polymer network topology

Unlike single chain polymeric species, polymer network topology is more complicated as a result of the amorphous feature so that a simple notation is usually not feasible. To analyze the topology of a network, the crosslinkers, including the branched crosslinker and cyclic crosslinker, are considered.


Branched crosslinking

Branched crosslinkers are entities that do not form cyclic topologies, which could be simply understood by branched topological polymer chain above. The ‘degree’ of branched demonstrates the theoretical number of polymer strands at the junctions of the crosslinker, also known as branch functionality (''f''). Combining monomers with different degree of branch functionality could generate various topological network with distinct elastic property. Meanwhile, amphiphilic polymers, such as block
copolymer In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are some ...
s, when forming
micelle A micelle () or micella () (plural micelles or micellae, respectively) is an aggregate (or supramolecular assembly) of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension (also known as associated col ...
structures, could also be treated as a branched crosslinker with high degree of branch functionality.


Cyclic crosslinking

Branched crosslinkers should in principle form branched polymer network, but in practice, they could also generate loops and cycles. Cyclic crosslinkers are more sophisticated and show multiple possibilities. Loops or cycles could form in a smaller scale between two polymer chains or in a larger scale among multiple polymer strands. Besides, bicyclic topology is likely to form if two loops are catenated or linked internally or externally. Special cyclic crosslinking is more attractive within
rotaxane In chemistry, a rotaxane () is a mechanically interlocked molecular architecture consisting of a dumbbell-shaped molecule which is threaded through a macrocycle (see graphical representation). The two components of a rotaxane are kinetically ...
s or
catenane In macromolecular chemistry, a catenane () is a mechanically interlocked molecular architecture consisting of two or more interlocked macrocycles, i.e. a molecule containing two or more intertwined rings. The interlocked rings cannot be se ...
s since cycles are already present in those molecules. The characterization of cyclic topologies within a polymer network, compared to branched crosslinker, is relatively harder to perform. Conventional techniques such as
rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an appli ...
and tensile strength analysis are used to offer semiquantitative insights into the polymer topologies. Recently, the development of multiple quantum nuclear magnetic resonance (NMR) and network disassembly spectrometry (NDS) techniques provides quantitative characterizations of loops or cycles in a polymer network.


Topological polymer/network synthesis


Topological polymer single chain

The synthesis of branched polymers (grafted polymer, comb polymer, star-shape polymer and dendrimer) has been well developed using well-known polymerization methodology such as
cationic An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
/
anionic An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
polymerization. Unlike branched polymer chain synthesis, the synthesis of cyclic polymer is more challenging. General cyclic species involve the combination between two fragments or among several fragments. Electrostatic self-assembly and covalent fixation is one of the most effective strategies to synthesize cyclic topological polymer. The reaction is driven by the electrostatic interactions between telechelic polytetrahydrofurans with cyclic ammonium salt and pluricaboxylate counterions. Upon dilution, the anions and cations could self-assemble into a cyclic structure, followed by a covalent fixation by heat or other external stimuli to undergo ring-opening reaction and close the chain into a cycle.


Topological polymer network

Polymer networks intrinsically have various spatial features due to their amorphous property within a three-dimensional network. There are generally two ways to introduce spatially unique entities into a polymer network: * The construction of a topological polymer network using monomer and crosslinker building blocks for a spatial uniqueness. * The introduction of crosslinkers that possess topological merits, such as polyrotaxane, polycatenane,
daisy chain Daisy chain may refer to: * Daisy chain, a garland created from daisy flowers * Daisy chain (climbing), a type of strap * Daisy chain (electrical engineering), a wiring scheme * Daisy chain (fishing), a type of fishing lure * Daisy chain (kno ...
and so on.


Examples

The topology of a polymer chain or a polymer network is crucial in determining the macroscopic properties of a polymeric material, especially mechanical properties like elasticity and physical properties involving
phase transition In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states ...
s. To date, several polymers with topological interest have been developed, which have been used for many applications, such as mechanical
elastomer An elastomer is a polymer with viscoelasticity (i.e. both viscosity and elasticity) and with weak intermolecular forces, generally low Young's modulus and high failure strain compared with other materials. The term, a portmanteau of ''elastic ...
, energy, and so on. Below are some of the representative topological polymers or polymer networks.


Interpenetrating polymer

Interpenetration polymers are polymer networks involving two and more polymer strands which are spatially intertwining with each other to form unique spatial topologies.


Dendrimer

Dendrimer Dendrimers are highly ordered, branched polymeric molecules. Synonymous terms for dendrimer include arborols and cascade molecules. Typically, dendrimers are symmetric about the core, and often adopt a spherical three-dimensional morphology. The ...
is a special branched polymers with a larger fraction of terminal nodes compared to the junction nodes and could be used for applications in drug delivery or catalysis.


Polyrotaxane

Polyrotaxane is a polymer chain or a polymer network with mechanical interlock structures between ring-like molecules and polymer chain, where both the rings and the linear polymer chain could serve as the crosslinker to form a polymer network.{{Cite journal, vauthors = Delaviz Y, Gibson HW , date= September 1992 , title=Macrocyclic polymers. 2. Synthesis of poly(amide crown ethers) based on bis(5-carboxy-1,3-phenylene)-32-crown-10. Network formation through threading, journal=Macromolecules , volume=25, issue=19, pages=4859–4862, doi=10.1021/ma00045a005, issn=0024-9297, bibcode=1992MaMol..25.4859D


References

Polymers