Topological Geometry
Topological geometry deals with incidence structures consisting of a point set P and a family \mathfrak of subsets of P called lines or circles etc. such that both P and \mathfrak carry a topology and all geometric operations like joining points by a line or intersecting lines are continuous. As in the case of topological groups, many deeper results require the point space to be (locally) compact and connected. This generalizes the observation that the line joining two distinct points in the Euclidean plane depends continuously on the pair of points and the intersection point of two lines is a continuous function of these lines. Linear geometries Linear geometries are incidence structures in which any two distinct points x and y are joined by a unique line xy. Such geometries are called ''topological'' if xy depends continuously on the pair (x,y) with respect to given topologies on the point set and the line set. The ''dual'' of a linear geometry is obtained by interchanging the rol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on itfor example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on itfor example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces. In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reinhold Baer
Reinhold Baer (22 July 1902 – 22 October 1979) was a German mathematician, known for his work in algebra. He introduced injective modules in 1940. He is the eponym of Baer rings, Baer groups, and Baer subplanes. Biography Baer studied mechanical engineering for a year at Leibniz University Hannover. He then went to study philosophy at Freiburg in 1921. While he was at Göttingen in 1922 he was influenced by Emmy Noether and Hellmuth Kneser. In 1924 he won a scholarship for specially gifted students. Baer wrote up his doctoral dissertation and it was published in Crelle's Journal in 1927. Baer accepted a post at Halle in 1928. There, he published Ernst Steinitz's "Algebraische Theorie der Körper" with Helmut Hasse, first published in Crelle's Journal in 1910. While Baer was with his wife in Austria, Adolf Hitler and the Nazis came into power. Both of Baer's parents were Jewish, and he was for this reason informed that his services at Halle were no longer required. Louis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homotopy Sphere
In algebraic topology, a branch of mathematics, a homotopy sphere is an ''n''-manifold that is homotopy equivalent to the ''n''-sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three .... It thus has the same homotopy groups and the same homology groups as the ''n''-sphere, and so every homotopy sphere is necessarily a homology sphere. The topological generalized Poincaré conjecture is that any ''n''-dimensional homotopy sphere is homeomorphic to the ''n''-sphere; it was solved by Stephen Smale in dimensions five and higher, by Michael Freedman in dimension 4, and for dimension 3 (the original Poincaré conjecture) by Grigori Perelman in 2005. The resolution of the smooth Poincaré conjecture in dimensions 5 and larger implies that homotopy spheres in those dimensions are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (to allow division), or equivalently, the concept of addition and subtraction. Combining these two ideas, one obtains a continuous group where multiplying points and their inverses is continuous. If the multiplication and taking of inverses are smoothness, smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the circle group. Rotating a circle is an example of a continuous symmetry. For an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Compact Group
In mathematics, a locally compact group is a topological group ''G'' for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are locally compact and such groups have a natural measure called the Haar measure. This allows one to define integrals of Borel measurable functions on ''G'' so that standard analysis notions such as the Fourier transform and L^p spaces can be generalized. Many of the results of finite group representation theory are proved by averaging over the group. For compact groups, modifications of these proofs yields similar results by averaging with respect to the normalized Haar integral. In the general locally compact setting, such techniques need not hold. The resulting theory is a central part of harmonic analysis. The representation theory for locally compact abelian groups is described by Pontryagin duality. Examples and counterexamples *A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Convergence
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E as the function domain if, given any arbitrarily small positive number \varepsilon, a number N can be found such that each of the functions f_N, f_,f_,\ldots differs from f by no more than \varepsilon ''at every point'' x ''in'' E. Described in an informal way, if f_n converges to f uniformly, then how quickly the functions f_n approach f is "uniform" throughout E in the following sense: in order to guarantee that f_n(x) differs from f(x) by less than a chosen distance \varepsilon, we only need to make sure that n is larger than or equal to a certain N, which we can find without knowing the value of x\in E in advance. In other words, there exists a number N=N(\varepsilon) that could depend on \varepsilon but is ''independent of x'', such that choosing n\geq N wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Action (mathematics)
In mathematics, a group action of a group G on a set (mathematics), set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformation (function), transformations form a group (mathematics), group under function composition; for example, the rotation (mathematics), rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a mathematical structure, structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. Definition In an algebraic structure such as a group, a ring, or vector space, an ''automorphism'' is simply a bijective homomorphism of an object into itself. (The definition of a homomorphism depends on the type of algebraic structure; see, for example, group homomorphism, ring homomorphism, and linear operator.) More generally, for an object in some category, an automorphism is a morphism of the object to itself that has an inverse morphism; that is, a morphism f: X\to X is an automorphism if there is a morphism g: X\to X such that g\circ f= f\circ g = \operatorname _X, where \operatorname _X is the identity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kurt Hessenberg
Kurt Hessenberg (17 August 1908 – 17 June 1994) was a German composer and professor at the Hochschule für Musik und Darstellende Kunst in Frankfurt. Life Kurt Hessenberg was born on 17 August 1908 in Frankfurt, as the fourth and last child of the lawyer Eduard Hessenberg and his wife Emma, née Kugler. Among his ancestors was Heinrich Hoffmann, whose famous children's book ''Struwwelpeter'' Hessenberg was to arrange for children's choir (op. 49) later in his life. From 1927–1931 Hessenberg studied at the Leipzig Conservatory. Among his teachers were Günter Raphael (composition) and Robert Teichmüller (piano). In 1933 Hessenberg became a teacher at the Hoch'sche Konservatorium in Frankfurt am Main, where he himself had taken his earliest music lessons. In 1940 Hessenberg received the "Nationaler Kompositionspreis" (national prize for composition), joined the NSDAP in 1942, and in 1951 he was awarded the Robert-Schumann-Prize of the city of Düsseldorf for his cantat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pappus's Hexagon Theorem
In mathematics, Pappus's hexagon theorem (attributed to Pappus of Alexandria) states that *given one set of collinear points A, B, C, and another set of collinear points a,b,c, then the intersection points X,Y,Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear, lying on the ''Pappus line''. These three points are the points of intersection of the "opposite" sides of the hexagon AbCaBc. It holds in a projective plane over any field, but fails for projective planes over any noncommutative division ring. Projective planes in which the "theorem" is valid are called pappian planes. If one considers a pappian plane containing a hexagon as just described but with sides Ab and aB parallel and also sides Bc and bC parallel (so that the Pappus line u is the line at infinity), one gets the ''affine version'' of Pappus's theorem shown in the second diagram. If the Pappus line u and the lines g,h have a point in common, one gets the so-called little version of Pappus's theor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Desargues Configuration
In geometry, the Desargues configuration is a Configuration (geometry), configuration of ten points and ten lines, with three points per line and three lines per point. It is named after Girard Desargues. The Desargues configuration can be constructed in two dimensions from the points and lines occurring in Desargues's theorem, in three dimensions from five planes in general position, or in four dimensions from the 5-cell, the four-dimensional regular simplex. It has a large group of symmetries, taking any point to any other point and any line to any other line. It is also self-dual, meaning that if the points are replaced by lines and vice versa using projective duality, the same configuration results. Graph (discrete mathematics), Graphs associated with the Desargues configuration include the Desargues graph (its graph of point-line incidences) and the Petersen graph (its graph of non-incident lines). The Desargues configuration is one of ten different configurations with ten p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |