HOME

TheInfoList



OR:

Topology (from the
Greek Greek may refer to: Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group *Greek language, a branch of the Indo-European language family **Proto-Greek language, the assumed last common ancestor of all kno ...
words , and ) is the branch of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
concerned with the properties of a
geometric object Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
that are preserved under continuous deformations, such as
stretching Stretching is a form of physical exercise in which a specific muscle or tendon (or muscle group) is deliberately expanded and flexed in order to improve the muscle's felt elasticity and achieve comfortable muscle tone. The result is a feelin ...
, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
endowed with a structure, called a ''
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity.
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
s, and, more generally,
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
s and homotopies. A property that is invariant under such deformations is a
topological property In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
. The following are basic examples of topological properties: the
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
, which allows distinguishing between a line and a
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
;
compactness In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it ...
, which allows distinguishing between a line and a circle;
connectedness In mathematics, connectedness is used to refer to various properties meaning, in some sense, "all one piece". When a mathematical object has such a property, we say it is connected; otherwise it is disconnected. When a disconnected object can be ...
, which allows distinguishing a circle from two non-intersecting circles. The ideas underlying topology go back to
Gottfried Wilhelm Leibniz Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to ...
, who in the 17th century envisioned the and .
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
's
Seven Bridges of Königsberg The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler, in 1736, laid the foundations of graph theory and prefigured the idea of topology. The city of Königsberg in Prussia ...
problem and
polyhedron formula In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space ...
are arguably the field's first theorems. The term ''topology'' was introduced by
Johann Benedict Listing Johann Benedict Listing (25 July 1808 – 24 December 1882) was a German mathematician. Early life and education J. B. Listing was born in Frankfurt and died in Göttingen. He finished his studies at the University of Göttingen in 1834, and ...
in the 19th century, although, it was not until the first decades of the 20th century that the idea of a topological space was developed.


Motivation

The motivating insight behind topology is that some geometric problems depend not on the exact shape of the objects involved, but rather on the way they are put together. For example, the square and the circle have many properties in common: they are both one-dimensional objects (from a topological point of view) and both separate the plane into two parts, the part inside and the part outside. In one of the first papers in topology,
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
demonstrated that it was impossible to find a route through the town of Königsberg (now
Kaliningrad Kaliningrad,. known as Königsberg; ; . until 1946, is the largest city and administrative centre of Kaliningrad Oblast, an Enclave and exclave, exclave of Russia between Lithuania and Poland ( west of the bulk of Russia), located on the Prego ...
) that would cross each of its seven bridges exactly once. This result did not depend on the lengths of the bridges or on their distance from one another, but only on connectivity properties: which bridges connect to which islands or riverbanks. This
Seven Bridges of Königsberg The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler, in 1736, laid the foundations of graph theory and prefigured the idea of topology. The city of Königsberg in Prussia ...
problem led to the branch of mathematics known as
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
. Similarly, the
hairy ball theorem The hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) states that there is no nonvanishing continuous function, continuous tangent vector field on even-dimensional n‑sphere, ''n''-spheres. For the ord ...
of algebraic topology says that "one cannot comb the hair flat on a hairy ball without creating a
cowlick A cowlick is a section of human hair that stands straight up or lies at an angle at odds with the style in which the rest of an individual's hair is worn. The most common site of a human cowlick is in the crown, but they can appear anywhere on t ...
." This fact is immediately convincing to most people, even though they might not recognize the more formal statement of the theorem, that there is no nonvanishing continuous tangent vector field on the sphere. As with the ''Bridges of Königsberg'', the result does not depend on the shape of the sphere; it applies to any kind of smooth blob, as long as it has no holes. To deal with these problems that do not rely on the exact shape of the objects, one must be clear about just what properties these problems do rely on. From this need arises the notion of
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
. The impossibility of crossing each bridge just once applies to any arrangement of bridges
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to those in Königsberg, and the hairy ball theorem applies to any space homeomorphic to a sphere. Intuitively, two spaces are homeomorphic if one can be deformed into the other without cutting or gluing. A famous example, known as the "Topologist's Breakfast", is that a topologist cannot distinguish a coffee mug from a doughnut; a sufficiently pliable doughnut could be reshaped to a coffee cup by creating a dimple and progressively enlarging it while shrinking the hole into a handle. Homeomorphism can be considered the most basic topological equivalence. Another is
homotopy equivalence In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A ...
. This is harder to describe without getting technical, but the essential notion is that two objects are homotopy equivalent if they both result from "squishing" some larger object.


History

Topology, as a well-defined mathematical discipline, originates in the early part of the twentieth century, but some isolated results can be traced back several centuries. Among these are certain questions in geometry investigated by
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
. His 1736 paper on the
Seven Bridges of Königsberg The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler, in 1736, laid the foundations of graph theory and prefigured the idea of topology. The city of Königsberg in Prussia ...
is regarded as one of the first practical applications of topology. On 14 November 1750, Euler wrote to a friend that he had realized the importance of the ''edges'' of a
polyhedron In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer ...
. This led to his
polyhedron formula In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space ...
, (where , , and respectively indicate the number of vertices, edges, and faces of the polyhedron). Some authorities regard this analysis as the first theorem, signaling the birth of topology. Further contributions were made by
Augustin-Louis Cauchy Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real a ...
, Ludwig Schläfli,
Johann Benedict Listing Johann Benedict Listing (25 July 1808 – 24 December 1882) was a German mathematician. Early life and education J. B. Listing was born in Frankfurt and died in Göttingen. He finished his studies at the University of Göttingen in 1834, and ...
,
Bernhard Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ...
and
Enrico Betti Enrico Betti Glaoui (21 October 1823 – 11 August 1892) was an Italian mathematician, now remembered mostly for his 1871 paper on topology that led to the later naming after him of the Betti numbers. He worked also on the theory of equations ...
.Richeson (2008) Listing introduced the term "Topologie" in ''Vorstudien zur Topologie'', written in his native German, in 1847, having used the word for ten years in correspondence before its first appearance in print. The English form "topology" was used in 1883 in Listing's obituary in the journal ''Nature'' to distinguish "qualitative geometry from the ordinary geometry in which quantitative relations chiefly are treated". Their work was corrected, consolidated and greatly extended by
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
. In 1895, he published his ground-breaking paper on '' Analysis Situs'', which introduced the concepts now known as
homotopy In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. ...
and homology, which are now considered part of
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
. The development of topology in the 20th century was marked by significant advances in both foundational theory and its application to other fields of mathematics. Unifying the work on function spaces of
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( ; ;  – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
,
Vito Volterra Vito Volterra (, ; 3 May 1860 – 11 October 1940) was an Italian mathematician and physicist, known for his contributions to Mathematical and theoretical biology, mathematical biology and Integral equation, integral equations, being one of the ...
,
Cesare Arzelà Cesare Arzelà (6 March 1847–15 March 1912) was an Italian mathematician who taught at the University of Bologna and is recognized for his contributions in the theory of functions, particularly for his characterization of sequences of continuo ...
,
Jacques Hadamard Jacques Salomon Hadamard (; 8 December 1865 – 17 October 1963) was a French mathematician who made major contributions in number theory, complex analysis, differential geometry, and partial differential equations. Biography The son of a tea ...
,
Giulio Ascoli Giulio Ascoli (20 January 1843, Trieste, Austrian Empire – 12 July 1896, Milan) was a Jewish-Italian mathematician. He was a student of the Scuola Normale di Pisa, where he graduated in 1868. In 1872 he became Professor of Algebra and Calcu ...
and others,
Maurice Fréchet Maurice may refer to: *Maurice (name), a given name and surname, including a list of people with the name Places * or Mauritius, an island country in the Indian Ocean * Maurice, Iowa, a city * Maurice, Louisiana, a village * Maurice River, a t ...
introduced the
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
in 1906. A metric space is now considered a special case of a general topological space, with any given topological space potentially giving rise to many distinct metric spaces. In 1914,
Felix Hausdorff Felix Hausdorff ( , ; November 8, 1868 – January 26, 1942) was a German mathematician, pseudonym Paul Mongré (''à mogré' (Fr.) = "according to my taste"), who is considered to be one of the founders of modern topology and who contributed sig ...
coined the term "topological space" and defined what is now called a
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topologi ...
. Currently, a topological space is a slight generalization of Hausdorff spaces, given in 1922 by
Kazimierz Kuratowski Kazimierz Kuratowski (; 2 February 1896 – 18 June 1980) was a Polish mathematician and logician. He was one of the leading representatives of the Warsaw School of Mathematics. He worked as a professor at the University of Warsaw and at the Ma ...
. Modern topology depends strongly on the ideas of set theory, developed by Georg Cantor in the later part of the 19th century. In addition to establishing the basic ideas of set theory, Cantor considered point sets in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
as part of his study of
Fourier series A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems ...
. For further developments, see
point-set topology In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differ ...
and algebraic topology. The 2022 Abel Prize was awarded to
Dennis Sullivan Dennis Parnell Sullivan (born February 12, 1941) is an American mathematician known for his work in algebraic topology, geometric topology, and dynamical systems. He holds the Albert Einstein Chair at the Graduate Center of the City University ...
"for his groundbreaking contributions to topology in its broadest sense, and in particular its algebraic, geometric and dynamical aspects".


Concepts


Topologies on sets

The term ''topology'' also refers to a specific mathematical idea central to the area of mathematics called topology. Informally, a topology describes how elements of a set relate spatially to each other. The same set can have different topologies. For instance, the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
, the
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
, and the
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883. Throu ...
can be thought of as the same set with different topologies. Formally, let be a set and let be a
family Family (from ) is a Social group, group of people related either by consanguinity (by recognized birth) or Affinity (law), affinity (by marriage or other relationship). It forms the basis for social order. Ideally, families offer predictabili ...
of subsets of . Then is called a topology on if: # Both the empty set and are elements of . # Any union of elements of is an element of . # Any intersection of finitely many elements of is an element of . If is a topology on , then the pair is called a topological space. The notation may be used to denote a set endowed with the particular topology . By definition, every topology is a -system. The members of are called ''open sets'' in . A subset of is said to be closed if its complement is in (that is, its complement is open). A subset of may be open, closed, both (a
clopen set In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counterintuitive, as the common meanings of and are antonyms, but their mathematical de ...
), or neither. The empty set and itself are always both closed and open. An open subset of which contains a point is called an open
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
of .


Continuous functions and homeomorphisms

A function or map from one topological space to another is called ''continuous'' if the inverse
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of any open set is open. If the function maps the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s to the real numbers (both spaces with the standard topology), then this definition of continuous is equivalent to the definition of continuous in
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
. If a continuous function is one-to-one and
onto In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
, and if the inverse of the function is also continuous, then the function is called a homeomorphism and the domain of the function is said to be homeomorphic to the range. Another way of saying this is that the function has a natural extension to the topology. If two spaces are homeomorphic, they have identical topological properties and are considered topologically the same. The cube and the sphere are homeomorphic, as are the coffee cup and the doughnut. However, the sphere is not homeomorphic to the doughnut.


Manifolds

While topological spaces can be extremely varied and exotic, many areas of topology focus on the more familiar class of spaces known as manifolds. A ''manifold'' is a topological space that resembles Euclidean space near each point. More precisely, each point of an -dimensional manifold has a
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
that is
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
to the Euclidean space of dimension . Lines and
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
s, but not figure eights, are one-dimensional manifolds. Two-dimensional manifolds are also called
surfaces A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. Surface or surfaces may also refer to: Mathematics *Surface (mathematics), a generalization of a plane which needs not be flat * Sur ...
, although not all
surfaces A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. Surface or surfaces may also refer to: Mathematics *Surface (mathematics), a generalization of a plane which needs not be flat * Sur ...
are manifolds. Examples include the plane, the sphere, and the torus, which can all be realized without self-intersection in three dimensions, and the
Klein bottle In mathematics, the Klein bottle () is an example of a Orientability, non-orientable Surface (topology), surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the ...
and
real projective plane In mathematics, the real projective plane, denoted or , is a two-dimensional projective space, similar to the familiar Euclidean plane in many respects but without the concepts of distance, circles, angle measure, or parallelism. It is the sett ...
, which cannot (that is, all their realizations are surfaces that are not manifolds).


Topics


General topology

General topology is the branch of topology dealing with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology. The basic object of study is
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s, which are sets equipped with a
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, that is, a family of
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s, called ''open sets'', which is closed under finite
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
s and (finite or infinite) unions. The fundamental concepts of topology, such as '' continuity'', ''
compactness In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it ...
'', and ''
connectedness In mathematics, connectedness is used to refer to various properties meaning, in some sense, "all one piece". When a mathematical object has such a property, we say it is connected; otherwise it is disconnected. When a disconnected object can be ...
'', can be defined in terms of open sets. Intuitively, continuous functions take nearby points to nearby points. Compact sets are those that can be covered by finitely many sets of arbitrarily small size. Connected sets are sets that cannot be divided into two pieces that are far apart. The words ''nearby'', ''arbitrarily small'', and ''far apart'' can all be made precise by using open sets. Several topologies can be defined on a given space. Changing a topology consists of changing the collection of open sets. This changes which functions are continuous and which subsets are compact or connected.
Metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s are an important class of topological spaces where the distance between any two points is defined by a function called a ''metric''. In a metric space, an open set is a union of open disks, where an open disk of radius centered at is the set of all points whose distance to is less than . Many common spaces are topological spaces whose topology can be defined by a metric. This is the case of the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
, the
complex plane In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, call ...
, real and complex
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s and
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
s. Having a metric simplifies many proofs.


Algebraic topology

Algebraic topology is a branch of mathematics that uses tools from
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
to study topological spaces. The basic goal is to find algebraic invariants that
classify Classification is the activity of assigning objects to some pre-existing classes or categories. This is distinct from the task of establishing the classes themselves (for example through cluster analysis). Examples include diagnostic tests, identif ...
topological spaces
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
homeomorphism, though usually most classify up to homotopy equivalence. The most important of these invariants are
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homo ...
s, homology, and
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a
free group In mathematics, the free group ''F'S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''− ...
is again a free group.


Differential topology

Differential topology is the field dealing with
differentiable function In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
s on
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
s. It is closely related to
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and together they make up the geometric theory of differentiable manifolds. More specifically, differential topology considers the properties and structures that require only a
smooth structure In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows mathematical analysis to be performed on the manifold. Definition A smooth structure on a manifold M ...
on a manifold to be defined. Smooth manifolds are "softer" than manifolds with extra geometric structures, which can act as obstructions to certain types of equivalences and deformations that exist in differential topology. For instance, volume and Riemannian curvature are invariants that can distinguish different geometric structures on the same smooth manifoldthat is, one can smoothly "flatten out" certain manifolds, but it might require distorting the space and affecting the curvature or volume.


Geometric topology

Geometric topology is a branch of topology that primarily focuses on low-dimensional
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s (that is, spaces of dimensions 2, 3, and 4) and their interaction with geometry, but it also includes some higher-dimensional topology. Some examples of topics in geometric topology are
orientability In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". A space is o ...
, handle decompositions, local flatness, crumpling and the planar and higher-dimensional Schönflies theorem. In high-dimensional topology, characteristic classes are a basic invariant, and
surgery theory In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while An ...
is a key theory. Low-dimensional topology is strongly geometric, as reflected in the
uniformization theorem In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generali ...
in 2 dimensions – every surface admits a constant curvature metric; geometrically, it has one of 3 possible geometries: positive
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
/spherical, zero curvature/flat, and negative curvature/hyperbolic – and the
geometrization conjecture In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theor ...
(now theorem) in 3 dimensions – every 3-manifold can be cut into pieces, each of which has one of eight possible geometries. 2-dimensional topology can be studied as
complex geometry In mathematics, complex geometry is the study of geometry, geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of space (mathematics), spaces su ...
in one variable ( Riemann surfaces are complex curves) – by the uniformization theorem every conformal class of
metrics Metric or metrical may refer to: Measuring * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics ...
is equivalent to a unique complex one, and 4-dimensional topology can be studied from the point of view of complex geometry in two variables (complex surfaces), though not every 4-manifold admits a complex structure.


Generalizations

Occasionally, one needs to use the tools of topology but a "set of points" is not available. In
pointless topology In mathematics, pointless topology, also called point-free topology (or pointfree topology) or topology without points and locale theory, is an approach to topology that avoids mentioning point (mathematics), points, and in which the Lattice (order ...
one considers instead the lattice of open sets as the basic notion of the theory, while
Grothendieck topologies In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is ca ...
are structures defined on arbitrary categories that allow the definition of sheaves on those categories and with that the definition of general cohomology theories.


Applications


Biology

Topology has been used to study various biological systems including molecules and nanostructure (e.g., membraneous objects). In particular,
circuit topology The circuit topology of a folded linear polymer refers to the arrangement of its intra-molecular contacts. Examples of linear polymers with intra-molecular contacts are nucleic acids and proteins. Proteins fold via the formation of contacts of v ...
and
knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
have been extensively applied to classify and compare the topology of folded proteins and nucleic acids.
Circuit topology The circuit topology of a folded linear polymer refers to the arrangement of its intra-molecular contacts. Examples of linear polymers with intra-molecular contacts are nucleic acids and proteins. Proteins fold via the formation of contacts of v ...
classifies folded molecular chains based on the pairwise arrangement of their intra-chain contacts and chain crossings.
Knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
, a branch of topology, is used in biology to study the effects of certain enzymes on DNA. These enzymes cut, twist, and reconnect the DNA, causing knotting with observable effects such as slower
electrophoresis Electrophoresis is the motion of charged dispersed particles or dissolved charged molecules relative to a fluid under the influence of a spatially uniform electric field. As a rule, these are zwitterions with a positive or negative net ch ...
.


Computer science

Topological data analysis In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA ...
uses techniques from algebraic topology to determine the large-scale structure of a set (for instance, determining if a cloud of points is spherical or toroidal). The main method used by topological data analysis is to: # Replace a set of data points with a family of
simplicial complex In mathematics, a simplicial complex is a structured Set (mathematics), set composed of Point (geometry), points, line segments, triangles, and their ''n''-dimensional counterparts, called Simplex, simplices, such that all the faces and intersec ...
es, indexed by a proximity parameter. # Analyse these topological complexes via algebraic topology – specifically, via the theory of persistent homology. # Encode the persistent homology of a data set in the form of a parameterized version of a
Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicia ...
, which is called a barcode. Several branches of
programming language semantics In programming language theory, semantics is the rigorous mathematical study of the meaning of programming languages. Semantics assigns computational meaning to valid strings in a programming language syntax. It is closely related to, and ofte ...
, such as
domain theory Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer ...
, are formalized using topology. In this context, Steve Vickers, building on work by
Samson Abramsky Samson Abramsky (born 12 March 1953) is a British computer scientist who is a Professor of Computer Science at University College London. He was previously the Christopher Strachey Professor of Computing at Wolfson College, Oxford, from 2000 t ...
and Michael B. Smyth, characterizes topological spaces as Boolean or
Heyting algebra In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' call ...
s over open sets, which are characterized as semidecidable (equivalently, finitely observable) properties.


Physics

Topology is relevant to physics in areas such as
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
,
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
,
quantum computing A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of wave-particle duality, both particles and waves, and quantum computing takes advantage of this behavior using s ...
and
physical cosmology Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fu ...
. The topological dependence of mechanical properties in solids is of interest in the disciplines of
mechanical engineering Mechanical engineering is the study of physical machines and mechanism (engineering), mechanisms that may involve force and movement. It is an engineering branch that combines engineering physics and engineering mathematics, mathematics principl ...
and
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
. Electrical and mechanical properties depend on the arrangement and network structures of
molecules A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry ...
and elementary units in materials. The
compressive strength In mechanics, compressive strength (or compression strength) is the capacity of a material or Structural system, structure to withstand Structural load, loads tending to reduce size (Compression (physics), compression). It is opposed to ''tensil ...
of crumpled topologies is studied in attempts to understand the high strength to weight of such structures that are mostly empty space. Topology is of further significance in
Contact mechanics Contact mechanics is the study of the Deformation (mechanics), deformation of solids that touch each other at one or more points. A central distinction in contact mechanics is between Stress (mechanics), stresses acting perpendicular to the cont ...
where the dependence of stiffness and friction on the dimensionality of surface structures is the subject of interest with applications in multi-body physics. A
topological quantum field theory In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory that computes topological invariants. While TQFTs were invented by physicists, they are also of mathemati ...
(or topological field theory or TQFT) is a quantum field theory that computes
topological invariant In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
s. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things,
knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
, the theory of four-manifolds in algebraic topology, and the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place e ...
s for work related to topological field theory. The topological classification of Calabi–Yau manifolds has important implications in
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
, as different manifolds can sustain different kinds of strings. In
topological quantum computer A topological quantum computer is a type of quantum computer. It utilizes anyons, a type of quasiparticle that occurs in two-dimensional systems. The anyons' world lines intertwine to form braids in a three-dimensional spacetime (one temporal ...
s, the qubits are stored in
topological properties In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
, that are by definition invariant with respect to homotopies. In cosmology, topology can be used to describe the overall
shape of the universe In physical cosmology, the shape of the universe refers to both its local and global geometry. Local geometry is defined primarily by its curvature, while the global geometry is characterised by its topology (which itself is constrained by curv ...
. This area of research is commonly known as
spacetime topology Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of to ...
. In condensed matter, a relevant application to topological physics comes from the possibility of obtaining a one-way current, which is a current protected from backscattering. It was first discovered in electronics with the famous
quantum Hall effect The quantum Hall effect (or integer quantum Hall effect) is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance exhi ...
, and then generalized in other areas of physics, for instance in photonics by F.D.M Haldane.


Robotics

The possible positions of a
robot A robot is a machine—especially one Computer program, programmable by a computer—capable of carrying out a complex series of actions Automation, automatically. A robot can be guided by an external control device, or the robot control, co ...
can be described by a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
called configuration space. In the area of
motion planning Motion planning, also path planning (also known as the navigation problem or the piano mover's problem) is a computational problem to find a sequence of valid configurations that moves the object from the source to destination. The term is used ...
, one finds paths between two points in configuration space. These paths represent a motion of the robot's
joint A joint or articulation (or articular surface) is the connection made between bones, ossicles, or other hard structures in the body which link an animal's skeletal system into a functional whole.Saladin, Ken. Anatomy & Physiology. 7th ed. McGraw- ...
s and other parts into the desired pose.


Games and puzzles

Disentanglement puzzles are based on topological aspects of the puzzle's shapes and components.


Fiber art

In order to create a continuous join of pieces in a modular construction, it is necessary to create an unbroken path in an order that surrounds each piece and traverses each edge only once. This process is an application of the
Eulerian path In graph theory, an Eulerian trail (or Eulerian path) is a trail (graph theory), trail in a finite graph (discrete mathematics), graph that visits every edge (graph theory), edge exactly once (allowing for revisiting vertices). Similarly, an Eule ...
.


Resources and research


Major journals

* '' Geometry & Topology-'' a mathematic research journal focused on geometry and topology, and their applications, published by Mathematical Sciences Publishers. * '' Journal of Topology-'' a
scientific journal In academic publishing, a scientific journal is a periodical publication designed to further the progress of science by disseminating new research findings to the scientific community. These journals serve as a platform for researchers, schola ...
which publishes papers of high quality and significance in topology,
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, and adjacent areas of mathematics.


Major books

* Munkres, James R. (2000). ''Topology'' (2nd ed.). Upper Saddle River, NJ: Prentice Hall. * Willard, Stephen (2016). ''General topology''. Dover books on mathematics. Mineola, N.Y: Dover publications. * Armstrong, M. A. (1983). ''Basic topology''. Undergraduate texts in mathematics. New York: Springer-Verlag. * John Kelley "General Topology" Springer, 1979.


See also

* Characterizations of the category of topological spaces *
Equivariant topology In mathematics, equivariant topology is the study of topological spaces that possess certain symmetries. In studying topological spaces, one often considers continuous maps f: X \to Y, and while equivariant topology also considers such maps, the ...
*
List of algebraic topology topics This is a list of algebraic topology topics. Homology (mathematics) *Simplex *Simplicial complex **Polytope **Triangulation **Barycentric subdivision ** Simplicial approximation theorem **Abstract simplicial complex **Simplicial set ** Simplicia ...
* List of examples in general topology * List of general topology topics * List of geometric topology topics * List of topology topics * Publications in topology *
Topoisomer Topoisomers or topological isomers are molecules with the same chemical formula and stereochemical bond connectivities but different topologies. Examples of molecules for which there exist topoisomers include DNA, which can form knots, and catena ...
* Topology glossary * Topological Galois theory * Topological geometry *
Topological order In physics, topological order describes a state or phase of matter that arises system with non-local interactions, such as entanglement in quantum mechanics, and floppy modes in elastic systems. Whereas classical phases of matter such as gases an ...


References


Citations


Bibliography

* * *


Further reading

* Ryszard Engelking, ''General Topology'', Heldermann Verlag, Sigma Series in Pure Mathematics, December 1989, . * Bourbaki; ''Elements of Mathematics: General Topology'', Addison–Wesley (1966). * * * (Provides a well-motivated, geometric account of general topology, and shows the use of groupoids in discussing van Kampen's theorem,
covering space In topology, a covering or covering projection is a continuous function, map between topological spaces that, intuitively, Local property, locally acts like a Projection (mathematics), projection of multiple copies of a space onto itself. In par ...
s, and
orbit space In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under fun ...
s.) *
Wacław Sierpiński Wacław Franciszek Sierpiński (; 14 March 1882 – 21 October 1969) was a Polish mathematician. He was known for contributions to set theory (research on the axiom of choice and the continuum hypothesis), number theory, theory of functions ...
, ''General Topology'', Dover Publications, 2000, * (Provides a popular introduction to topology and geometry) *


External links

*
Elementary Topology: A First Course
Viro, Ivanov, Netsvetaev, Kharlamov.
The Topological Zoo
at
The Geometry Center The Geometry Center was a mathematics research and education center at the University of Minnesota. It was established by the National Science Foundation in the late 1980s and closed in 1998. The focus of the center's work was the use of computer ...
.
Topology Atlas


Aisling McCluskey and Brian McMaster, Topology Atlas.
Topology Glossary

Moscow 1935: Topology moving towards America
a historical essay by
Hassler Whitney Hassler Whitney (March 23, 1907 – May 10, 1989) was an American mathematician. He was one of the founders of singularity theory, and did foundational work in manifolds, embeddings, immersion (mathematics), immersions, characteristic classes and, ...
. {{Authority control Mathematical structures