HOME

TheInfoList



OR:

In category theory, a branch of mathematics, a symmetric monoidal category is a
monoidal category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left ...
(i.e. a category in which a "tensor product" \otimes is defined) such that the tensor product is symmetric (i.e. A\otimes B is, in a certain strict sense, naturally isomorphic to B\otimes A for all objects A and B of the category). One of the prototypical examples of a symmetric monoidal category is the
category of vector spaces In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ri ...
over some fixed
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''k,'' using the ordinary
tensor product of vector spaces In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes ...
.


Definition

A symmetric monoidal category is a
monoidal category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left ...
(''C'', ⊗, ''I'') such that, for every pair ''A'', ''B'' of objects in ''C'', there is an isomorphism s_: A \otimes B \to B \otimes A that is
natural Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
in both ''A'' and ''B'' and such that the following diagrams commute: *The unit coherence: *: *The associativity coherence: *: *The inverse law: *: In the diagrams above, ''a'', ''l'' , ''r'' are the associativity isomorphism, the left unit isomorphism, and the right unit isomorphism respectively.


Examples

Some examples and non-examples of symmetric monoidal categories: * The
category of sets In the mathematical field of category theory, the category of sets, denoted as Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the total functions from ''A'' to ''B'', and the composition ...
. The tensor product is the set theoretic cartesian product, and any
singleton Singleton may refer to: Sciences, technology Mathematics * Singleton (mathematics), a set with exactly one element * Singleton field, used in conformal field theory Computing * Singleton pattern, a design pattern that allows only one instance of ...
can be fixed as the unit object. * The
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories T ...
. Like before, the tensor product is just the cartesian product of groups, and the trivial group is the unit object. * More generally, any category with finite products, that is, a cartesian monoidal category, is symmetric monoidal. The tensor product is the direct product of objects, and any terminal object (empty product) is the unit object. * The
category of bimodules In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ...
over a ring ''R'' is monoidal (using the ordinary tensor product of modules), but not necessarily symmetric. If ''R'' is commutative, the category of left ''R''-modules is symmetric monoidal. The latter example class includes the category of all vector spaces over a given field. * Given a field ''k'' and a group (or a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi iden ...
over ''k''), the category of all ''k''-linear representations of the group (or of the Lie algebra) is a symmetric monoidal category. Here the standard tensor product of representations is used. * The categories (Ste,\circledast) and (Ste,\odot) of
stereotype space In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) for which the canonical evaluation map from X into its bidual (which is the strong dual of the strong dual of X) is an is ...
s over are symmetric monoidal, and moreover, (Ste,\circledast) is a
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
symmetric monoidal category with the internal hom-functor \oslash.


Properties

The
classifying space In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e. a topological space all of whose homotopy groups are trivial) by a proper free ac ...
(geometric realization of the
nerve A nerve is an enclosed, cable-like bundle of nerve fibers (called axons) in the peripheral nervous system. A nerve transmits electrical impulses. It is the basic unit of the peripheral nervous system. A nerve provides a common pathway for the ...
) of a symmetric monoidal category is an E_\infty space, so its group completion is an infinite loop space.


Specializations

A
dagger symmetric monoidal category In the mathematical field of category theory, a dagger symmetric monoidal category is a monoidal category \langle\mathbf,\otimes, I\rangle that also possesses a dagger structure. That is, this category comes equipped not only with a tensor produc ...
is a symmetric monoidal category with a compatible dagger structure. A
cosmos The cosmos (, ) is another name for the Universe. Using the word ''cosmos'' implies viewing the universe as a complex and orderly system or entity. The cosmos, and understandings of the reasons for its existence and significance, are studied in ...
is a
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies ...
cocomplete
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
symmetric monoidal category.


Generalizations

In a symmetric monoidal category, the natural isomorphisms s_: A \otimes B \to B \otimes A are their ''own'' inverses in the sense that s_\circ s_=1_. If we abandon this requirement (but still require that A\otimes B be naturally isomorphic to B\otimes A), we obtain the more general notion of a
braided monoidal category In mathematics, a ''commutativity constraint'' \gamma on a monoidal category ''\mathcal'' is a choice of isomorphism \gamma_ : A\otimes B \rightarrow B\otimes A for each pair of objects ''A'' and ''B'' which form a "natural family." In partic ...
.


References

* * {{Category theory Monoidal categories