HOME

TheInfoList



OR:

Supervised learning (SL) is a
machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
paradigm for problems where the available data consists of labelled examples, meaning that each data point contains features (covariates) and an associated label. The goal of supervised learning algorithms is learning a function that
maps A map is a symbolic depiction emphasizing relationships between elements of some space, such as objects, regions, or themes. Many maps are static, fixed to paper or some other durable medium, while others are dynamic or interactive. Althoug ...
feature vectors (inputs) to labels (output), based on example input-output pairs. It infers a function from ' consisting of a set of ''training examples''. In supervised learning, each example is a ''pair'' consisting of an input object (typically a vector) and a desired output value (also called the ''supervisory signal''). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way (see inductive bias). This statistical quality of an algorithm is measured through the so-called
generalization error For supervised learning applications in machine learning and statistical learning theory, generalization error (also known as the out-of-sample error or the risk) is a measure of how accurately an algorithm is able to predict outcome values for pre ...
.


Steps to follow

To solve a given problem of supervised learning, one has to perform the following steps: # Determine the type of training examples. Before doing anything else, the user should decide what kind of data is to be used as a training set. In the case of
handwriting analysis Graphology is the analysis of handwriting with attempt to determine someone's personality traits. No scientific evidence exists to support graphology, and it is generally considered a pseudoscience or scientifically questionable practice. Howe ...
, for example, this might be a single handwritten character, an entire handwritten word, an entire sentence of handwriting or perhaps a full paragraph of handwriting. # Gather a training set. The training set needs to be representative of the real-world use of the function. Thus, a set of input objects is gathered and corresponding outputs are also gathered, either from human experts or from measurements. # Determine the input feature representation of the learned function. The accuracy of the learned function depends strongly on how the input object is represented. Typically, the input object is transformed into a
feature vector In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern ...
, which contains a number of features that are descriptive of the object. The number of features should not be too large, because of the
curse of dimensionality The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience. Th ...
; but should contain enough information to accurately predict the output. # Determine the structure of the learned function and corresponding learning algorithm. For example, the engineer may choose to use
support-vector machine In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laborator ...
s or
decision tree A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains co ...
s. # Complete the design. Run the learning algorithm on the gathered training set. Some supervised learning algorithms require the user to determine certain control parameters. These parameters may be adjusted by optimizing performance on a subset (called a ''validation'' set) of the training set, or via cross-validation. # Evaluate the accuracy of the learned function. After parameter adjustment and learning, the performance of the resulting function should be measured on a test set that is separate from the training set.


Algorithm choice

A wide range of supervised learning algorithms are available, each with its strengths and weaknesses. There is no single learning algorithm that works best on all supervised learning problems (see the No free lunch theorem). There are four major issues to consider in supervised learning:


Bias-variance tradeoff

A first issue is the tradeoff between ''bias'' and ''variance''. Imagine that we have available several different, but equally good, training data sets. A learning algorithm is biased for a particular input x if, when trained on each of these data sets, it is systematically incorrect when predicting the correct output for x. A learning algorithm has high variance for a particular input x if it predicts different output values when trained on different training sets. The prediction error of a learned classifier is related to the sum of the bias and the variance of the learning algorithm. Generally, there is a tradeoff between bias and variance. A learning algorithm with low bias must be "flexible" so that it can fit the data well. But if the learning algorithm is too flexible, it will fit each training data set differently, and hence have high variance. A key aspect of many supervised learning methods is that they are able to adjust this tradeoff between bias and variance (either automatically or by providing a bias/variance parameter that the user can adjust).


Function complexity and amount of training data

The second issue is of the amount of training data available relative to the complexity of the "true" function (classifier or regression function). If the true function is simple, then an "inflexible" learning algorithm with high bias and low variance will be able to learn it from a small amount of data. But if the true function is highly complex (e.g., because it involves complex interactions among many different input features and behaves differently in different parts of the input space), then the function will only be able to learn with a large amount of training data paired with a "flexible" learning algorithm with low bias and high variance.


Dimensionality of the input space

A third issue is the dimensionality of the input space. If the input feature vectors have large dimensions, learning the function can be difficult even if the true function only depends on a small number of those features. This is because the many "extra" dimensions can confuse the learning algorithm and cause it to have high variance. Hence, input data of large dimensions typically requires tuning the classifier to have low variance and high bias. In practice, if the engineer can manually remove irrelevant features from the input data, it will likely improve the accuracy of the learned function. In addition, there are many algorithms for
feature selection In machine learning and statistics, feature selection, also known as variable selection, attribute selection or variable subset selection, is the process of selecting a subset of relevant features (variables, predictors) for use in model construc ...
that seek to identify the relevant features and discard the irrelevant ones. This is an instance of the more general strategy of
dimensionality reduction Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally ...
, which seeks to map the input data into a lower-dimensional space prior to running the supervised learning algorithm.


Noise in the output values

A fourth issue is the degree of noise in the desired output values (the supervisory
target variable Dependent and independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. Dependent variables receive this name because, in an experiment, their values are studied under the supposition or demand ...
s). If the desired output values are often incorrect (because of human error or sensor errors), then the learning algorithm should not attempt to find a function that exactly matches the training examples. Attempting to fit the data too carefully leads to
overfitting mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". An overfitt ...
. You can overfit even when there are no measurement errors (stochastic noise) if the function you are trying to learn is too complex for your learning model. In such a situation, the part of the target function that cannot be modeled "corrupts" your training data - this phenomenon has been called deterministic noise. When either type of noise is present, it is better to go with a higher bias, lower variance estimator. In practice, there are several approaches to alleviate noise in the output values such as early stopping to prevent
overfitting mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". An overfitt ...
as well as detecting and removing the noisy training examples prior to training the supervised learning algorithm. There are several algorithms that identify noisy training examples and removing the suspected noisy training examples prior to training has decreased
generalization error For supervised learning applications in machine learning and statistical learning theory, generalization error (also known as the out-of-sample error or the risk) is a measure of how accurately an algorithm is able to predict outcome values for pre ...
with
statistical significance In statistical hypothesis testing, a result has statistical significance when it is very unlikely to have occurred given the null hypothesis (simply by chance alone). More precisely, a study's defined significance level, denoted by \alpha, is the p ...
.


Other factors to consider

Other factors to consider when choosing and applying a learning algorithm include the following: * Heterogeneity of the data. If the feature vectors include features of many different kinds (discrete, discrete ordered, counts, continuous values), some algorithms are easier to apply than others. Many algorithms, including support-vector machines,
linear regression In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is ...
,
logistic regression In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear function (calculus), linear combination of one or more independent var ...
,
neural networks A neural network is a network or circuit of biological neurons, or, in a modern sense, an artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is either a biological neural network, made up of biological ...
, and nearest neighbor methods, require that the input features be numerical and scaled to similar ranges (e.g., to the 1,1interval). Methods that employ a distance function, such as nearest neighbor methods and support-vector machines with Gaussian kernels, are particularly sensitive to this. An advantage of
decision trees A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains cond ...
is that they easily handle heterogeneous data. * Redundancy in the data. If the input features contain redundant information (e.g., highly correlated features), some learning algorithms (e.g.,
linear regression In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is ...
,
logistic regression In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear function (calculus), linear combination of one or more independent var ...
, and distance based methods) will perform poorly because of numerical instabilities. These problems can often be solved by imposing some form of regularization. * Presence of interactions and non-linearities. If each of the features makes an independent contribution to the output, then algorithms based on linear functions (e.g.,
linear regression In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is ...
,
logistic regression In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear function (calculus), linear combination of one or more independent var ...
,
support-vector machine In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laborator ...
s, naive Bayes) and distance functions (e.g., nearest neighbor methods, support-vector machines with Gaussian kernels) generally perform well. However, if there are complex interactions among features, then algorithms such as
decision trees A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains cond ...
and
neural networks A neural network is a network or circuit of biological neurons, or, in a modern sense, an artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is either a biological neural network, made up of biological ...
work better, because they are specifically designed to discover these interactions. Linear methods can also be applied, but the engineer must manually specify the interactions when using them. When considering a new application, the engineer can compare multiple learning algorithms and experimentally determine which one works best on the problem at hand (see cross validation). Tuning the performance of a learning algorithm can be very time-consuming. Given fixed resources, it is often better to spend more time collecting additional training data and more informative features than it is to spend extra time tuning the learning algorithms.


Algorithms

The most widely used learning algorithms are: *
Support-vector machine In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laborator ...
s *
Linear regression In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is ...
*
Logistic regression In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear function (calculus), linear combination of one or more independent var ...
* Naive Bayes *
Linear discriminant analysis Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features ...
*
Decision trees A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains cond ...
*
K-nearest neighbor algorithm In statistics, the ''k''-nearest neighbors algorithm (''k''-NN) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regre ...
*
Neural networks A neural network is a network or circuit of biological neurons, or, in a modern sense, an artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is either a biological neural network, made up of biological ...
( Multilayer perceptron) *
Similarity learning Similarity learning is an area of supervised machine learning in artificial intelligence. It is closely related to regression and classification, but the goal is to learn a similarity function that measures how similar or related two objects are ...


How supervised learning algorithms work

Given a set of N training examples of the form \ such that x_i is the
feature vector In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern ...
of the i-th example and y_i is its label (i.e., class), a learning algorithm seeks a function g: X \to Y, where X is the input space and Y is the output space. The function g is an element of some space of possible functions G, usually called the ''hypothesis space''. It is sometimes convenient to represent g using a scoring function f: X \times Y \to \mathbb such that g is defined as returning the y value that gives the highest score: g(x) = \underset \; f(x,y). Let F denote the space of scoring functions. Although G and F can be any space of functions, many learning algorithms are probabilistic models where g takes the form of a
conditional probability In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occu ...
model g(x) = P(y, x), or f takes the form of a
joint probability Given two random variables that are defined on the same probability space, the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs. The joint distribution can just as well be considered ...
model f(x,y) = P(x,y). For example, naive Bayes and
linear discriminant analysis Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features ...
are joint probability models, whereas
logistic regression In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear function (calculus), linear combination of one or more independent var ...
is a conditional probability model. There are two basic approaches to choosing f or g:
empirical risk minimization Empirical risk minimization (ERM) is a principle in statistical learning theory which defines a family of learning algorithms and is used to give theoretical bounds on their performance. The core idea is that we cannot know exactly how well an a ...
and
structural risk minimization Structural risk minimization (SRM) is an inductive principle of use in machine learning. Commonly in machine learning, a generalized model must be selected from a finite data set, with the consequent problem of overfitting – the model becomin ...
. Empirical risk minimization seeks the function that best fits the training data. Structural risk minimization includes a ''penalty function'' that controls the bias/variance tradeoff. In both cases, it is assumed that the training set consists of a sample of independent and identically distributed pairs, (x_i, \;y_i). In order to measure how well a function fits the training data, a
loss function In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "co ...
L: Y \times Y \to \mathbb^ is defined. For training example (x_i,\;y_i), the loss of predicting the value \hat is L(y_i,\hat). The ''risk'' R(g) of function g is defined as the expected loss of g. This can be estimated from the training data as :R_(g) = \frac \sum_i L(y_i, g(x_i)).


Empirical risk minimization

In empirical risk minimization, the supervised learning algorithm seeks the function g that minimizes R(g). Hence, a supervised learning algorithm can be constructed by applying an optimization algorithm to find g. When g is a conditional probability distribution P(y, x) and the loss function is the negative log likelihood: L(y, \hat) = -\log P(y , x), then empirical risk minimization is equivalent to
maximum likelihood estimation In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed stati ...
. When G contains many candidate functions or the training set is not sufficiently large, empirical risk minimization leads to high variance and poor generalization. The learning algorithm is able to memorize the training examples without generalizing well. This is called
overfitting mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". An overfitt ...
.


Structural risk minimization

Structural risk minimization Structural risk minimization (SRM) is an inductive principle of use in machine learning. Commonly in machine learning, a generalized model must be selected from a finite data set, with the consequent problem of overfitting – the model becomin ...
seeks to prevent overfitting by incorporating a regularization penalty into the optimization. The regularization penalty can be viewed as implementing a form of
Occam's razor Occam's razor, Ockham's razor, or Ocham's razor ( la, novacula Occami), also known as the principle of parsimony or the law of parsimony ( la, lex parsimoniae), is the problem-solving principle that "entities should not be multiplied beyond neces ...
that prefers simpler functions over more complex ones. A wide variety of penalties have been employed that correspond to different definitions of complexity. For example, consider the case where the function g is a linear function of the form : g(x) = \sum_^d \beta_j x_j. A popular regularization penalty is \sum_j \beta_j^2, which is the squared
Euclidean norm Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
of the weights, also known as the L_2 norm. Other norms include the L_1 norm, \sum_j , \beta_j, , and the L_0 "norm", which is the number of non-zero \beta_js. The penalty will be denoted by C(g). The supervised learning optimization problem is to find the function g that minimizes : J(g) = R_(g) + \lambda C(g). The parameter \lambda controls the bias-variance tradeoff. When \lambda = 0, this gives empirical risk minimization with low bias and high variance. When \lambda is large, the learning algorithm will have high bias and low variance. The value of \lambda can be chosen empirically via cross validation. The complexity penalty has a Bayesian interpretation as the negative log prior probability of g, -\log P(g), in which case J(g) is the
posterior probability The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posterior p ...
of g.


Generative training

The training methods described above are ''discriminative training'' methods, because they seek to find a function g that discriminates well between the different output values (see
discriminative model Discriminative models, also referred to as conditional models, are a class of logistical models used for classification or regression. They distinguish decision boundaries through observed data, such as pass/fail, win/lose, alive/dead or healthy/sic ...
). For the special case where f(x,y) = P(x,y) is a
joint probability distribution Given two random variables that are defined on the same probability space, the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs. The joint distribution can just as well be considere ...
and the loss function is the negative log likelihood - \sum_i \log P(x_i, y_i), a risk minimization algorithm is said to perform ''generative training'', because f can be regarded as a
generative model In statistical classification, two main approaches are called the generative approach and the discriminative approach. These compute classifiers by different approaches, differing in the degree of statistical modelling. Terminology is incons ...
that explains how the data were generated. Generative training algorithms are often simpler and more computationally efficient than discriminative training algorithms. In some cases, the solution can be computed in closed form as in naive Bayes and
linear discriminant analysis Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features ...
.


Generalizations

There are several ways in which the standard supervised learning problem can be generalized: *
Semi-supervised learning Weak supervision is a branch of machine learning where noisy, limited, or imprecise sources are used to provide supervision signal for labeling large amounts of training data in a supervised learning setting. This approach alleviates the burden of ...
: In this setting, the desired output values are provided only for a subset of the training data. The remaining data is unlabeled. * Weak supervision: In this setting, noisy, limited, or imprecise sources are used to provide supervision signal for labeling training data. *
Active learning Active learning is "a method of learning in which students are actively or experientially involved in the learning process and where there are different levels of active learning, depending on student involvement." states that "students partici ...
: Instead of assuming that all of the training examples are given at the start, active learning algorithms interactively collect new examples, typically by making queries to a human user. Often, the queries are based on unlabeled data, which is a scenario that combines semi-supervised learning with active learning. * Structured prediction: When the desired output value is a complex object, such as a parse tree or a labeled graph, then standard methods must be extended. *
Learning to rank Learning to rank. Slides from Tie-Yan Liu's talk at WWW 2009 conference aravailable online or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the constru ...
: When the input is a set of objects and the desired output is a ranking of those objects, then again the standard methods must be extended.


Approaches and algorithms

* Analytical learning *
Artificial neural network Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets, are computing systems inspired by the biological neural networks that constitute animal brains. An ANN is based on a collection of connected units ...
*
Backpropagation In machine learning, backpropagation (backprop, BP) is a widely used algorithm for training feedforward artificial neural networks. Generalizations of backpropagation exist for other artificial neural networks (ANNs), and for functions gener ...
*
Boosting (meta-algorithm) In machine learning, boosting is an ensemble meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on the q ...
*
Bayesian statistics Bayesian statistics is a theory in the field of statistics based on the Bayesian interpretation of probability where probability expresses a ''degree of belief'' in an event. The degree of belief may be based on prior knowledge about the event, ...
*
Case-based reasoning In artificial intelligence and philosophy, case-based reasoning (CBR), broadly construed, is the process of solving new problems based on the solutions of similar past problems. In everyday life, an auto mechanic who fixes an engine by recal ...
*
Decision tree learning Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of ob ...
* Inductive logic programming *
Gaussian process regression In statistics, originally in geostatistics, kriging or Kriging, also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging g ...
*
Genetic programming In artificial intelligence, genetic programming (GP) is a technique of evolving programs, starting from a population of unfit (usually random) programs, fit for a particular task by applying operations analogous to natural genetic processes to t ...
*
Group method of data handling Group method of data handling (GMDH) is a family of inductive algorithms for computer-based mathematical modeling of multi-parametric datasets that features fully automatic structural and parametric optimization of models. GMDH is used in such fiel ...
* Kernel estimators *
Learning automata A learning automaton is one type of machine learning algorithm studied since 1970s. Learning automata select their current action based on past experiences from the environment. It will fall into the range of reinforcement learning if the environm ...
* Learning classifier systems *
Learning vector quantization In computer science, learning vector quantization (LVQ) is a prototype-based supervised classification Classification is a process related to categorization, the process in which ideas and objects are recognized, differentiated and understood. C ...
* Minimum message length (
decision tree A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains co ...
s, decision graphs, etc.) * Multilinear subspace learning *
Naive Bayes classifier In statistics, naive Bayes classifiers are a family of simple " probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features (see Bayes classifier). They are among the simplest Baye ...
* Maximum entropy classifier *
Conditional random field Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without consi ...
* Nearest neighbor algorithm *
Probably approximately correct learning In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant.L. Valiant. A theory of the learnable.' Communications of the ...
(PAC) learning *
Ripple down rules Ripple-down rules (RDR) are a way of approaching knowledge acquisition. Knowledge acquisition refers to the transfer of knowledge from human experts to knowledge-based systems. Introductory material Ripple-down rules are an incremental approa ...
, a knowledge acquisition methodology * Symbolic machine learning algorithms * Subsymbolic machine learning algorithms *
Support vector machine In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories ...
s * Minimum complexity machines (MCM) *
Random forest Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. For classification tasks, the output of th ...
s * Ensembles of classifiers *
Ordinal classification Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scal ...
* Data pre-processing * Handling imbalanced datasets *
Statistical relational learning Statistical relational learning (SRL) is a subdiscipline of artificial intelligence and machine learning that is concerned with domain models that exhibit both uncertainty (which can be dealt with using statistical methods) and complex, relational ...
* Proaftn, a multicriteria classification algorithm


Applications

*
Bioinformatics Bioinformatics () is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combin ...
*
Cheminformatics Cheminformatics (also known as chemoinformatics) refers to use of physical chemistry theory with computer and information science techniques—so called "''in silico''" techniques—in application to a range of descriptive and prescriptive proble ...
** Quantitative structure–activity relationship * Database marketing *
Handwriting recognition Handwriting recognition (HWR), also known as handwritten text recognition (HTR), is the ability of a computer to receive and interpret intelligible handwritten input from sources such as paper documents, photographs, touch-screens and other dev ...
* Information retrieval **
Learning to rank Learning to rank. Slides from Tie-Yan Liu's talk at WWW 2009 conference aravailable online or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the constru ...
*
Information extraction Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concer ...
* Object recognition in
computer vision Computer vision is an Interdisciplinarity, interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to understand and automate t ...
*
Optical character recognition Optical character recognition or optical character reader (OCR) is the electronic or mechanical conversion of images of typed, handwritten or printed text into machine-encoded text, whether from a scanned document, a photo of a document, a sc ...
* Spam detection *
Pattern recognition Pattern recognition is the automated recognition of patterns and regularities in data. It has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphic ...
*
Speech recognition Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers with the ma ...
* Supervised learning is a special case of
downward causation In philosophy, downward causation is a causal relationship from higher levels of a system to lower-level parts of that system: for example, mental events acting to cause physical events. The term was originally coined in 1974 by the philosopher and ...
in biological systems * Landform classification using satellite imagery * Spend classification in
procurement Procurement is the method of discovering and agreeing to terms and purchasing goods, services, or other works from an external source, often with the use of a tendering or competitive bidding process. When a government agency buys goods or ser ...
processes


General issues

*
Computational learning theory In computer science, computational learning theory (or just learning theory) is a subfield of artificial intelligence devoted to studying the design and analysis of machine learning algorithms. Overview Theoretical results in machine learning m ...
* Inductive bias *
Overfitting (machine learning) In mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". An overfi ...
* (Uncalibrated)
class membership probabilities In machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation sh ...
*
Unsupervised learning Unsupervised learning is a type of algorithm that learns patterns from untagged data. The hope is that through mimicry, which is an important mode of learning in people, the machine is forced to build a concise representation of its world and t ...
* Version spaces


See also

*
List of datasets for machine learning research These datasets are applied for machine learning research and have been cited in peer-reviewed academic journals. Datasets are an integral part of the field of machine learning. Major advances in this field can result from advances in learning a ...


References


External links


Machine Learning Open Source Software (MLOSS)
{{DEFAULTSORT:Supervised Learning