HOME

TheInfoList



OR:

The supercontinent cycle is the quasi-periodic aggregation and dispersal of
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
's
continental crust Continental crust is the layer of igneous, metamorphic, and sedimentary rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as '' continental shelves''. This layer is sometimes called '' si ...
. There are varying opinions as to whether the amount of continental crust is increasing, decreasing, or staying about the same, but it is agreed that the Earth's crust is constantly being reconfigured. One complete
supercontinent In geology, a supercontinent is the assembly of most or all of Earth's continent, continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", ...
cycle is said to take 300 to 500 million years.
Continental collision In geology, continental collision is a phenomenon of plate tectonics that occurs at Convergent boundary, convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroy ...
makes fewer and larger continents while
rift In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics. Typical rift features are a central linear downfaulted depression, called a graben, or more commonly a half-graben ...
ing makes more and smaller continents.


Theory

The most recent
supercontinent In geology, a supercontinent is the assembly of most or all of Earth's continent, continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", ...
,
Pangaea Pangaea or Pangea ( ) was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous period approximately 335 mi ...
, formed about 300 million years ago (0.3 Ga), during the
Paleozoic The Paleozoic ( , , ; or Palaeozoic) Era is the first of three Era (geology), geological eras of the Phanerozoic Eon. Beginning 538.8 million years ago (Ma), it succeeds the Neoproterozoic (the last era of the Proterozoic Eon) and ends 251.9 Ma a ...
era. There are two different views on the history of earlier supercontinents.


Series

The first theory proposes a series of supercontinents: starting with Vaalbara (3.6 to 2.8 Ga); Ur (c. 3 Ga); Kenorland (2.7 to 2.1 Ga); Columbia (1.8 to 1.5 Ga);
Rodinia Rodinia (from the Russian родина, ''rodina'', meaning "motherland, birthplace") was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) and broke up 750–633 million years ago (Ma). wer ...
(1.25 Ga to 750 Ma); and
Pannotia Pannotia (from Greek: ''wikt:pan-, pan-'', "all", ''wikt:νότος, -nótos'', "south"; meaning "all southern land"), also known as the Vendian supercontinent, Greater Gondwana, and the Pan-African supercontinent, was a relatively short-lived Neo ...
( 600 Ma), whose dispersal produced the continents that ultimately collided to form Pangaea. The kinds of minerals found inside ancient
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Diamond is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of e ...
s suggest that the cycle of supercontinental formation and breakup began roughly 3 Ga. Before 3.2 Ga, only diamonds with peridotitic compositions (commonly found in the
Earth's mantle Earth's mantle is a layer of silicate mineral, silicate rock between the Earth's crust, crust and the Earth's outer core, outer core. It has a mass of and makes up 67% of the mass of Earth. It has a thickness of making up about 46% of Earth's ...
) formed, whereas after 3.0 Ga eclogitic diamonds (rocks from the
Earth's crust Earth's crust is its thick outer shell of rock, referring to less than one percent of the planet's radius and volume. It is the top component of the lithosphere, a solidified division of Earth's layers that includes the crust and the upper ...
) became prevalent. This change is thought to have come about as
subduction Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at the convergent boundaries between tectonic plates. Where one tectonic plate converges with a second p ...
and
continental collision In geology, continental collision is a phenomenon of plate tectonics that occurs at Convergent boundary, convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroy ...
introduced
eclogite Eclogite () is a metamorphic rock containing garnet ( almandine- pyrope) hosted in a matrix of sodium-rich pyroxene ( omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite, amphibole, phengite, paragonite, zoisit ...
into subcontinental diamond-forming fluids. The hypothesized supercontinent cycle is concurrent with the shorter-term Wilson Cycle named after plate tectonics pioneer
John Tuzo Wilson John Tuzo Wilson (October 24, 1908 – April 15, 1993) was a Canadian geophysicist and geologist who achieved worldwide acclaim for his contributions to the theory of plate tectonics. He added the concept of ''hot spots'', a volcanic region hott ...
, which describes the periodic opening and closing of
oceanic basin In hydrology, an oceanic basin (or ocean basin) is anywhere on Earth that is covered by seawater. Geologically, most of the ocean basins are large Structural basin, geologic basins that are below sea level. Most commonly the ocea ...
s from a single plate rift. The oldest seafloor material found today dates to 170 Ma, whereas the oldest continental crust material found today dates to 4 Ga, showing the relative brevity of the regional Wilson cycles compared to the whole-planetary pulses seen in the arrangement of the continents.


Protopangea–Paleopangea

The second view, based on both palaeomagnetic and geological evidence, is that supercontinent cycles did not occur before about 0.6 Ga (during the
Ediacaran The Ediacaran ( ) is a geological period of the Neoproterozoic geologic era, Era that spans 96 million years from the end of the Cryogenian Period at 635 Million years ago, Mya to the beginning of the Cambrian Period at 538.8 Mya. It is the last ...
period). Instead, the
continental crust Continental crust is the layer of igneous, metamorphic, and sedimentary rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as '' continental shelves''. This layer is sometimes called '' si ...
comprised a single supercontinent from about 2.7 Ga until it broke up for the first time, somewhere around 0.6 Ga. This reconstruction is based on the observation that if only small peripheral modifications are made to the primary reconstruction, the data show that the palaeomagnetic poles converged to quasi-static positions for long intervals between about 2.7–2.2 Ga; 1.5–1.25 Ga; and 0.75–0.6 Ga. During the intervening periods, the poles appear to have conformed to a unified apparent polar wander path. The paleomagnetic data are adequately explained by the existence of a single Protopangea–Paleopangea supercontinent with prolonged quasi-integrity. The prolonged duration of this supercontinent could be explained by the operation of lid tectonics (comparable to the tectonics operating on Mars and Venus) during
Precambrian The Precambrian ( ; or pre-Cambrian, sometimes abbreviated pC, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of t ...
times, as opposed to the
plate tectonics Plate tectonics (, ) is the scientific theory that the Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago. The model builds on the concept of , an idea developed durin ...
seen on the contemporary Earth. However, this approach is widely criticized as an incorrect application of paleomagnetic data.


Effects on sea level

It is known that
sea level Mean sea level (MSL, often shortened to sea level) is an mean, average surface level of one or more among Earth's coastal Body of water, bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical ...
is generally low when the continents are together and high when they are apart. For example, sea level was low at the time of formation of Pangaea (
Permian The Permian ( ) is a geologic period and System (stratigraphy), stratigraphic system which spans 47 million years, from the end of the Carboniferous Period million years ago (Mya), to the beginning of the Triassic Period 251.902 Mya. It is the s ...
) and Pannotia (latest
Neoproterozoic The Neoproterozoic Era is the last of the three geologic eras of the Proterozoic geologic eon, eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era an ...
), and rose rapidly to maxima during
Ordovician The Ordovician ( ) is a geologic period and System (geology), system, the second of six periods of the Paleozoic Era (geology), Era, and the second of twelve periods of the Phanerozoic Eon (geology), Eon. The Ordovician spans 41.6 million years f ...
and
Cretaceous The Cretaceous ( ) is a geological period that lasted from about 143.1 to 66 mya (unit), million years ago (Mya). It is the third and final period of the Mesozoic Era (geology), Era, as well as the longest. At around 77.1 million years, it is the ...
times, when the continents were dispersed. Major influences on sea level during the break up of supercontinents include: oceanic crust age, lost
back-arc basin A back-arc basin is a type of geologic Structural basin, basin, found at some convergent boundary, convergent plate boundaries. Presently all back-arc basins are submarine features associated with island arcs and subduction zones, with many found ...
s, marine sediment depths, emplacement of large igneous provinces, and the effect of passive margin extension. Of these, oceanic crust age, and marine sediment depths seem to play some of the largest roles in creating a sea level model. The addition of the other controlling parameters help stabilize models when data is sparse. The age of the
oceanic lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the lithospheric mantle, the topmost portion of the upper mantle that behaves elastically on time sc ...
provides a first order control on the depth of the ocean basins, and therefore on global sea level. Oceanic lithosphere forms at
mid-ocean ridge A mid-ocean ridge (MOR) is a undersea mountain range, seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading ...
s and moves outwards, conductively cooling and shrinking, which decreases the thickness and increases the density of the oceanic lithosphere, and lowers the seafloor away from mid-ocean ridges. For oceanic lithosphere that is less than about 75 Ma, a simple cooling half-space model of conductive cooling works, in which the depth of the ocean basins ''d'' in areas in which there is no nearby subduction is a function of the age of the oceanic lithosphere ''t''. In general, d(t) = \frac a_ T_1 \sqrt + d_ where ''κ'' is the
thermal diffusivity In thermodynamics, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. It is a measure of the rate of heat transfer inside a material and has SI, SI units of m2/s. It is an intensive ...
of the mantle lithosphere ( ), ''a''eff is the effective thermal expansion coefficient for rock ( ), ''T''1 is the temperature of ascending magma compared to the temperature at the upper boundary ( 1220 °C for the Atlantic and Indian Oceans, 1120 °C for the eastern Pacific) and ''d''r is the depth of the ridge below the ocean surface. After plugging in rough numbers for the sea floor, the equation becomes: for the eastern Pacific Ocean: d(t) = 350 \sqrt + 2500 and for the Atlantic and Indian Oceans: d(t) = 390 \sqrt + 2500 where ''d'' is in meters and ''t'' is in millions of years, so that recently formed crust at the mid-ocean ridges lies at about 2,500 m depth, whereas 50-million-year-old seafloor lies at a depth of about 5,000 m. As the mean level of the sea floor decreases, the volume of the ocean basins increases, and if other factors that can control sea level remain constant, sea level falls. The converse is also true: younger oceanic lithosphere leads to shallower oceans and higher sea levels if other factors remain constant. The surface area of the oceans can change when continents
rift In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics. Typical rift features are a central linear downfaulted depression, called a graben, or more commonly a half-graben ...
(stretching the continents decreases ocean area and raises sea level) or as a result of continental collision (compressing the continents increases ocean area and lowers sea level). Increasing sea level will flood the continents, while decreasing sea level will expose
continental shelves A continental shelf is a portion of a continent that is submerged under an area of relatively shallow water, known as a shelf sea. Much of these shelves were exposed by drops in sea level during glacial periods. The shelf surrounding an island ...
. Because the continental shelf has a very low slope, a small increase in sea level will result in a large change in the percent of continents flooded. If the world ocean on average is young, the seafloor will be relatively shallow, and sea level will be high: more of the continents are flooded. If the world ocean is on average old, seafloor will be relatively deep, and sea level will be low: more of the continents will be exposed. There is thus a relatively simple relationship between the supercontinent cycle and the mean age of the seafloor. *Supercontinent = older seafloor = lower sea level *Dispersed continents = younger seafloor = higher sea level There will also be a climatic effect of the supercontinent cycle that will amplify this further: *Supercontinent = continental climate dominant = continental glaciation likely = still lower sea level *Dispersed continents = maritime climate dominant = continental glaciation unlikely = sea level is not lowered by this mechanism


Relation to global tectonics

There is a progression of tectonic regimes that accompanies the supercontinent cycle: During break-up of the supercontinent, rifting environments dominate. This is followed by passive margin environments, while seafloor spreading continues and the oceans grow. This in turn is followed by the development of collisional environments that become increasingly important with time. First collisions are between continents and island arcs, but lead ultimately to continent-continent collisions. This was the situation during the Paleozoic supercontinent cycle; it is being observed for the
Mesozoic The Mesozoic Era is the Era (geology), era of Earth's Geologic time scale, geological history, lasting from about , comprising the Triassic, Jurassic and Cretaceous Period (geology), Periods. It is characterized by the dominance of archosaurian r ...
Cenozoic The Cenozoic Era ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterized by the dominance of mammals, insects, birds and angiosperms (flowering plants). It is the latest of three g ...
supercontinent cycle, still in progress.


Relation to climate

There are two types of global earth climates: icehouse and greenhouse. Icehouse is characterized by frequent continental glaciations and severe desert environments. Greenhouse is characterized by warm climates. Both reflect the supercontinent cycle. The Earth is currently in a short greenhouse phase of an icehouse climate. Periods of icehouse climate include much of the
Neoproterozoic The Neoproterozoic Era is the last of the three geologic eras of the Proterozoic geologic eon, eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era an ...
, late
Paleozoic The Paleozoic ( , , ; or Palaeozoic) Era is the first of three Era (geology), geological eras of the Phanerozoic Eon. Beginning 538.8 million years ago (Ma), it succeeds the Neoproterozoic (the last era of the Proterozoic Eon) and ends 251.9 Ma a ...
, late
Cenozoic The Cenozoic Era ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterized by the dominance of mammals, insects, birds and angiosperms (flowering plants). It is the latest of three g ...
, while periods of greenhouse climate include early
Paleozoic The Paleozoic ( , , ; or Palaeozoic) Era is the first of three Era (geology), geological eras of the Phanerozoic Eon. Beginning 538.8 million years ago (Ma), it succeeds the Neoproterozoic (the last era of the Proterozoic Eon) and ends 251.9 Ma a ...
,
Mesozoic The Mesozoic Era is the Era (geology), era of Earth's Geologic time scale, geological history, lasting from about , comprising the Triassic, Jurassic and Cretaceous Period (geology), Periods. It is characterized by the dominance of archosaurian r ...
–early
Cenozoic The Cenozoic Era ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterized by the dominance of mammals, insects, birds and angiosperms (flowering plants). It is the latest of three g ...
. *Icehouse climate **Continents moving together **Sea level low due to lack of seafloor production **Climate cooler, arid **Associated with
aragonite sea An aragonite sea contains aragonite and high-magnesium calcite as the primary inorganic calcium carbonate precipitates. The reason lies in the highly hydrated divalent ion, the second most abundant cation in seawater after , known to be a stron ...
s **Formation of supercontinents *Greenhouse climate **Continents dispersed **Sea level high **High level of
seafloor spreading Seafloor spreading, or seafloor spread, is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener ...
**Relatively large amounts of CO2 production at oceanic rifting zones **Climate warm and humid **Associated with calcite seas


Relation to evolution

The principal mechanism for evolution is
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the Heredity, heritable traits characteristic of a population over generation ...
among diverse populations. Diversity, as measured by the number of families, follows the supercontinent cycle very well. As
genetic drift Genetic drift, also known as random genetic drift, allelic drift or the Wright effect, is the change in the Allele frequency, frequency of an existing gene variant (allele) in a population due to random chance. Genetic drift may cause gene va ...
occurs more frequently in small populations, diversity is an observed consequence of geographic isolation. Less isolation, and thus less diversification, occurs when the continents are all together, producing one continent, one continuous coast, and one ocean. In late Neoproterozoic to early Paleozoic, when the tremendous proliferation of diverse
metazoa Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia (). With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hol ...
occurred, isolation of marine environments resulted from the breakup of Pannotia. A north–south arrangement of continents and oceans leads to much more diversity and isolation than east–west arrangements. North-to-south arrangements give climatically different zones along the communication routes to the north and south, which are separated by water or land from other continental or oceanic zones of similar climate. Formation of similar tracts of continents and ocean basins oriented east–west would lead to much less isolation, diversification, and slower evolution, since each continent or ocean is in fewer climatic zones. Through the Cenozoic, isolation has been maximized by a north–south arrangement.


See also

*
History of Earth The natural history of Earth concerns the development of planet Earth from its formation to the present day. Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by consta ...
* List of supercontinents


References


Further reading

* * *


External links


Reconstructions from "Paleomap Project"




{{Continents of Earth Geologic modelling Plate tectonics Supercontinents