HOME

TheInfoList



OR:

In
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
and related fields, a stochastic () or random process is a mathematical object usually defined as a
family Family (from la, familia) is a group of people related either by consanguinity (by recognized birth) or affinity (by marriage or other relationship). The purpose of the family is to maintain the well-being of its members and of society. Idea ...
of
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
l population, an
electrical current Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
fluctuating due to thermal noise, or the movement of a gas
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
. Stochastic processes have applications in many disciplines such as
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditar ...
, chemistry, ecology,
neuroscience Neuroscience is the science, scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions and disorders. It is a Multidisciplinary approach, multidisciplinary science that combines physiology, an ...
, physics,
image processing An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
,
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
,
control theory Control theory is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a ...
,
information theory Information theory is the scientific study of the quantification (science), quantification, computer data storage, storage, and telecommunication, communication of information. The field was originally established by the works of Harry Nyquist a ...
,
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
,
cryptography Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adve ...
and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in
finance Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the discipline of ...
. Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the Wiener process or Brownian motion process, used by Louis Bachelier to study price changes on the Paris Bourse, and the Poisson process, used by A. K. Erlang to study the number of phone calls occurring in a certain period of time. These two stochastic processes are considered the most important and central in the theory of stochastic processes, and were discovered repeatedly and independently, both before and after Bachelier and Erlang, in different settings and countries. The term random function is also used to refer to a stochastic or random process, because a stochastic process can also be interpreted as a random element in a
function space In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vect ...
. The terms ''stochastic process'' and ''random process'' are used interchangeably, often with no specific mathematical space for the set that indexes the random variables. But often these two terms are used when the random variables are indexed by the integers or an interval of the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
. If the random variables are indexed by the Cartesian plane or some higher-dimensional Euclidean space, then the collection of random variables is usually called a random field instead. The values of a stochastic process are not always numbers and can be vectors or other mathematical objects. Based on their mathematical properties, stochastic processes can be grouped into various categories, which include random walks, martingales, Markov processes, Lévy processes,
Gaussian process In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. e ...
es, random fields, renewal processes, and branching processes. The study of stochastic processes uses mathematical knowledge and techniques from
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
,
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
, linear algebra, set theory, and
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
as well as branches of mathematical analysis such as real analysis,
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many sim ...
,
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph ...
, and functional analysis. The theory of stochastic processes is considered to be an important contribution to mathematics and it continues to be an active topic of research for both theoretical reasons and applications.


Introduction

A stochastic or random process can be defined as a collection of random variables that is indexed by some mathematical set, meaning that each random variable of the stochastic process is uniquely associated with an element in the set. The set used to index the random variables is called the index set. Historically, the index set was some
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
, such as the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
, giving the index set the interpretation of time. Each random variable in the collection takes values from the same mathematical space known as the state space. This state space can be, for example, the integers, the real line or n-dimensional Euclidean space. An increment is the amount that a stochastic process changes between two index values, often interpreted as two points in time. A stochastic process can have many outcomes, due to its randomness, and a single outcome of a stochastic process is called, among other names, a sample function or realization.


Classifications

A stochastic process can be classified in different ways, for example, by its state space, its index set, or the dependence among the random variables. One common way of classification is by the cardinality of the index set and the state space. When interpreted as time, if the index set of a stochastic process has a finite or countable number of elements, such as a finite set of numbers, the set of integers, or the natural numbers, then the stochastic process is said to be in
discrete time In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time Discrete time views values of variables as occurring at distinct, separate "po ...
. If the index set is some interval of the real line, then time is said to be continuous. The two types of stochastic processes are respectively referred to as discrete-time and
continuous-time stochastic process In probability theory and statistics, a continuous-time stochastic process, or a continuous-space-time stochastic process is a stochastic process In probability theory and related fields, a stochastic () or random process is a mathematical obje ...
es. Discrete-time stochastic processes are considered easier to study because continuous-time processes require more advanced mathematical techniques and knowledge, particularly due to the index set being uncountable. If the index set is the integers, or some subset of them, then the stochastic process can also be called a random sequence. If the state space is the integers or natural numbers, then the stochastic process is called a discrete or integer-valued stochastic process. If the state space is the real line, then the stochastic process is referred to as a real-valued stochastic process or a process with continuous state space. If the state space is n-dimensional Euclidean space, then the stochastic process is called a n-dimensional vector process or n-vector process.


Etymology

The word ''stochastic'' in English was originally used as an adjective with the definition "pertaining to conjecturing", and stemming from a Greek word meaning "to aim at a mark, guess", and the
Oxford English Dictionary The ''Oxford English Dictionary'' (''OED'') is the first and foundational historical dictionary of the English language, published by Oxford University Press (OUP). It traces the historical development of the English language, providing a com ...
gives the year 1662 as its earliest occurrence. In his work on probability ''Ars Conjectandi'', originally published in Latin in 1713, Jakob Bernoulli used the phrase "Ars Conjectandi sive Stochastice", which has been translated to "the art of conjecturing or stochastics". This phrase was used, with reference to Bernoulli, by Ladislaus Bortkiewicz who in 1917 wrote in German the word ''stochastik'' with a sense meaning random. The term ''stochastic process'' first appeared in English in a 1934 paper by Joseph Doob. For the term and a specific mathematical definition, Doob cited another 1934 paper, where the term ''stochastischer Prozeß'' was used in German by Aleksandr Khinchin, though the German term had been used earlier, for example, by Andrei Kolmogorov in 1931. According to the Oxford English Dictionary, early occurrences of the word ''random'' in English with its current meaning, which relates to chance or luck, date back to the 16th century, while earlier recorded usages started in the 14th century as a noun meaning "impetuosity, great speed, force, or violence (in riding, running, striking, etc.)". The word itself comes from a Middle French word meaning "speed, haste", and it is probably derived from a French verb meaning "to run" or "to gallop". The first written appearance of the term ''random process'' pre-dates ''stochastic process'', which the Oxford English Dictionary also gives as a synonym, and was used in an article by Francis Edgeworth published in 1888.


Terminology

The definition of a stochastic process varies, but a stochastic process is traditionally defined as a collection of random variables indexed by some set. The terms ''random process'' and ''stochastic process'' are considered synonyms and are used interchangeably, without the index set being precisely specified. Both "collection", or "family" are used while instead of "index set", sometimes the terms "parameter set" or "parameter space" are used. The term ''random function'' is also used to refer to a stochastic or random process, though sometimes it is only used when the stochastic process takes real values. This term is also used when the index sets are mathematical spaces other than the real line,, p. 1 while the terms ''stochastic process'' and ''random process'' are usually used when the index set is interpreted as time, and other terms are used such as ''random field'' when the index set is n-dimensional Euclidean space \mathbb^n or a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
.


Notation

A stochastic process can be denoted, among other ways, by \_ , \_ , \, \ or simply as X or X(t), although X(t) is regarded as an abuse of function notation. For example, X(t) or X_t are used to refer to the random variable with the index t, and not the entire stochastic process. If the index set is T=[0,\infty), then one can write, for example, (X_t , t \geq 0) to denote the stochastic process.


Examples


Bernoulli process

One of the simplest stochastic processes is the Bernoulli process, which is a sequence of independent and identically distributed (iid) random variables, where each random variable takes either the value one or zero, say one with probability p and zero with probability 1-p. This process can be linked to repeatedly flipping a coin, where the probability of obtaining a head is p and its value is one, while the value of a tail is zero. In other words, a Bernoulli process is a sequence of iid Bernoulli random variables, where each coin flip is an example of a
Bernoulli trial In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is ...
.


Random walk

Random walks are stochastic processes that are usually defined as sums of iid random variables or random vectors in Euclidean space, so they are processes that change in discrete time. But some also use the term to refer to processes that change in continuous time, particularly the Wiener process used in finance, which has led to some confusion, resulting in its criticism. There are other various types of random walks, defined so their state spaces can be other mathematical objects, such as lattices and groups, and in general they are highly studied and have many applications in different disciplines. A classic example of a random walk is known as the ''simple random walk'', which is a stochastic process in discrete time with the integers as the state space, and is based on a Bernoulli process, where each Bernoulli variable takes either the value positive one or negative one. In other words, the simple random walk takes place on the integers, and its value increases by one with probability, say, p, or decreases by one with probability 1-p, so the index set of this random walk is the natural numbers, while its state space is the integers. If the p=0.5, this random walk is called a symmetric random walk.


Wiener process

The Wiener process is a stochastic process with
stationary In addition to its common meaning, stationary may have the following specialized scientific meanings: Mathematics * Stationary point * Stationary process * Stationary state Meteorology * A stationary front is a weather front that is not moving ...
and independent increments that are normally distributed based on the size of the increments. The Wiener process is named after
Norbert Wiener Norbert Wiener (November 26, 1894 – March 18, 1964) was an American mathematician and philosopher. He was a professor of mathematics at the Massachusetts Institute of Technology (MIT). A child prodigy, Wiener later became an early researcher i ...
, who proved its mathematical existence, but the process is also called the Brownian motion process or just Brownian motion due to its historical connection as a model for
Brownian movement Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position insid ...
in liquids. Playing a central role in the theory of probability, the Wiener process is often considered the most important and studied stochastic process, with connections to other stochastic processes. Its index set and state space are the non-negative numbers and real numbers, respectively, so it has both continuous index set and states space. But the process can be defined more generally so its state space can be n-dimensional Euclidean space. If the
mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set. For a data set, the '' ari ...
of any increment is zero, then the resulting Wiener or Brownian motion process is said to have zero drift. If the mean of the increment for any two points in time is equal to the time difference multiplied by some constant \mu, which is a real number, then the resulting stochastic process is said to have drift \mu. Almost surely, a sample path of a Wiener process is continuous everywhere but nowhere differentiable. It can be considered as a continuous version of the simple random walk. The process arises as the mathematical limit of other stochastic processes such as certain random walks rescaled, which is the subject of Donsker's theorem or invariance principle, also known as the functional central limit theorem. The Wiener process is a member of some important families of stochastic processes, including Markov processes, Lévy processes and Gaussian processes. The process also has many applications and is the main stochastic process used in stochastic calculus. It plays a central role in quantitative finance, where it is used, for example, in the Black–Scholes–Merton model. The process is also used in different fields, including the majority of natural sciences as well as some branches of social sciences, as a mathematical model for various random phenomena.


Poisson process

The Poisson process is a stochastic process that has different forms and definitions. It can be defined as a counting process, which is a stochastic process that represents the random number of points or events up to some time. The number of points of the process that are located in the interval from zero to some given time is a Poisson random variable that depends on that time and some parameter. This process has the natural numbers as its state space and the non-negative numbers as its index set. This process is also called the Poisson counting process, since it can be interpreted as an example of a counting process. If a Poisson process is defined with a single positive constant, then the process is called a homogeneous Poisson process. The homogeneous Poisson process is a member of important classes of stochastic processes such as Markov processes and Lévy processes. The homogeneous Poisson process can be defined and generalized in different ways. It can be defined such that its index set is the real line, and this stochastic process is also called the stationary Poisson process. If the parameter constant of the Poisson process is replaced with some non-negative integrable function of t, the resulting process is called an inhomogeneous or nonhomogeneous Poisson process, where the average density of points of the process is no longer constant. Serving as a fundamental process in queueing theory, the Poisson process is an important process for mathematical models, where it finds applications for models of events randomly occurring in certain time windows. Defined on the real line, the Poisson process can be interpreted as a stochastic process, among other random objects. But then it can be defined on the n-dimensional Euclidean space or other mathematical spaces, where it is often interpreted as a random set or a random counting measure, instead of a stochastic process. In this setting, the Poisson process, also called the Poisson point process, is one of the most important objects in probability theory, both for applications and theoretical reasons. But it has been remarked that the Poisson process does not receive as much attention as it should, partly due to it often being considered just on the real line, and not on other mathematical spaces.


Definitions


Stochastic process

A stochastic process is defined as a collection of random variables defined on a common probability space (\Omega, \mathcal, P), where \Omega is a sample space, \mathcal is a \sigma-
algebra Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
, and P is a
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more gener ...
; and the random variables, indexed by some set T, all take values in the same mathematical space S, which must be measurable with respect to some \sigma-algebra \Sigma. In other words, for a given probability space (\Omega, \mathcal, P) and a measurable space (S,\Sigma), a stochastic process is a collection of S-valued random variables, which can be written as:
\.
Historically, in many problems from the natural sciences a point t\in T had the meaning of time, so X(t) is a random variable representing a value observed at time t. A stochastic process can also be written as \ to reflect that it is actually a function of two variables, t\in T and \omega\in \Omega. There are other ways to consider a stochastic process, with the above definition being considered the traditional one. For example, a stochastic process can be interpreted or defined as a S^T-valued random variable, where S^T is the space of all the possible functions from the set T into the space S. However this alternative definition as a "function-valued random variable" in general requires additional regularity assumptions to be well-defined.


Index set

The set T is called the index set or parameter set of the stochastic process. Often this set is some subset of the
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
, such as the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
or an interval, giving the set T the interpretation of time. In addition to these sets, the index set T can be another set with a total order or a more general set, such as the Cartesian plane R^2 or n-dimensional Euclidean space, where an element t\in T can represent a point in space. That said, many results and theorems are only possible for stochastic processes with a totally ordered index set.


State space

The mathematical space S of a stochastic process is called its ''state space''. This mathematical space can be defined using
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s,
real line In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
s, n-dimensional Euclidean spaces, complex planes, or more abstract mathematical spaces. The state space is defined using elements that reflect the different values that the stochastic process can take.


Sample function

A sample function is a single
outcome Outcome may refer to: * Outcome (probability), the result of an experiment in probability theory * Outcome (game theory), the result of players' decisions in game theory * ''The Outcome'', a 2005 Spanish film * An outcome measure (or endpoint) ...
of a stochastic process, so it is formed by taking a single possible value of each random variable of the stochastic process. More precisely, if \ is a stochastic process, then for any point \omega\in\Omega, the mapping
X(\cdot,\omega): T \rightarrow S,
is called a sample function, a realization, or, particularly when T is interpreted as time, a sample path of the stochastic process \. This means that for a fixed \omega\in\Omega, there exists a sample function that maps the index set T to the state space S. Other names for a sample function of a stochastic process include trajectory, path function or path.


Increment

An increment of a stochastic process is the difference between two random variables of the same stochastic process. For a stochastic process with an index set that can be interpreted as time, an increment is how much the stochastic process changes over a certain time period. For example, if \ is a stochastic process with state space S and index set T=[0,\infty), then for any two non-negative numbers t_1\in [0,\infty) and t_2\in [0,\infty) such that t_1\leq t_2, the difference X_-X_ is a S-valued random variable known as an increment. When interested in the increments, often the state space S is the real line or the natural numbers, but it can be n-dimensional Euclidean space or more abstract spaces such as Banach spaces.


Further definitions


Law

For a stochastic process X\colon\Omega \rightarrow S^T defined on the probability space (\Omega, \mathcal, P), the law of stochastic process X is defined as the image measure:
\mu=P\circ X^,
where P is a probability measure, the symbol \circ denotes function composition and X^ is the pre-image of the measurable function or, equivalently, the S^T-valued random variable X, where S^T is the space of all the possible S-valued functions of t\in T, so the law of a stochastic process is a probability measure. For a measurable subset B of S^T, the pre-image of X gives
X^(B)=\,
so the law of a X can be written as:
\mu(B)=P(\).
The law of a stochastic process or a random variable is also called the probability law, probability distribution, or the distribution.


Finite-dimensional probability distributions

For a stochastic process X with law \mu, its finite-dimensional distribution for t_1,\dots,t_n\in T is defined as:
\mu_ =P\circ (X(),\dots, X())^,
This measure \mu_is the joint distribution of the random vector (X(),\dots, X()) ; it can be viewed as a "projection" of the law \mu onto a finite subset of T. For any measurable subset C of the n-fold Cartesian power S^n=S\times\dots \times S, the finite-dimensional distributions of a stochastic process X can be written as:
\mu_(C) =P \Big(\big\ \Big).
The finite-dimensional distributions of a stochastic process satisfy two mathematical conditions known as consistency conditions.


Stationarity

Stationarity is a mathematical property that a stochastic process has when all the random variables of that stochastic process are identically distributed. In other words, if X is a stationary stochastic process, then for any t\in T the random variable X_t has the same distribution, which means that for any set of n index set values t_1,\dots, t_n, the corresponding n random variables
X_, \dots X_,
all have the same
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
. The index set of a stationary stochastic process is usually interpreted as time, so it can be the integers or the real line. But the concept of stationarity also exists for point processes and random fields, where the index set is not interpreted as time. When the index set T can be interpreted as time, a stochastic process is said to be stationary if its finite-dimensional distributions are invariant under translations of time. This type of stochastic process can be used to describe a physical system that is in steady state, but still experiences random fluctuations. The intuition behind stationarity is that as time passes the distribution of the stationary stochastic process remains the same. A sequence of random variables forms a stationary stochastic process only if the random variables are identically distributed. A stochastic process with the above definition of stationarity is sometimes said to be strictly stationary, but there are other forms of stationarity. One example is when a discrete-time or continuous-time stochastic process X is said to be stationary in the wide sense, then the process X has a finite second moment for all t\in T and the covariance of the two random variables X_t and X_ depends only on the number h for all t\in T.
Khinchin Aleksandr Yakovlevich Khinchin (russian: Алекса́ндр Я́ковлевич Хи́нчин, french: Alexandre Khintchine; July 19, 1894 – November 18, 1959) was a Soviet mathematician and one of the most significant contributors to th ...
introduced the related concept of stationarity in the wide sense, which has other names including covariance stationarity or stationarity in the broad sense.


Filtration

A
filtration Filtration is a physical separation process that separates solid matter and fluid from a mixture using a ''filter medium'' that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter ...
is an increasing sequence of sigma-algebras defined in relation to some probability space and an index set that has some total order relation, such as in the case of the index set being some subset of the real numbers. More formally, if a stochastic process has an index set with a total order, then a filtration \_ , on a probability space (\Omega, \mathcal, P) is a family of sigma-algebras such that \mathcal_s \subseteq \mathcal_t \subseteq \mathcal for all s \leq t, where t, s\in T and \leq denotes the total order of the index set T. With the concept of a filtration, it is possible to study the amount of information contained in a stochastic process X_t at t\in T, which can be interpreted as time t. The intuition behind a filtration \mathcal_t is that as time t passes, more and more information on X_t is known or available, which is captured in \mathcal_t, resulting in finer and finer partitions of \Omega.


Modification

A modification of a stochastic process is another stochastic process, which is closely related to the original stochastic process. More precisely, a stochastic process X that has the same index set T, state space S, and probability space (\Omega,,P) as another stochastic process Y is said to be a modification of Y if for all t\in T the following
P(X_t=Y_t)=1 ,
holds. Two stochastic processes that are modifications of each other have the same finite-dimensional law and they are said to be stochastically equivalent or equivalent. Instead of modification, the term version is also used, however some authors use the term version when two stochastic processes have the same finite-dimensional distributions, but they may be defined on different probability spaces, so two processes that are modifications of each other, are also versions of each other, in the latter sense, but not the converse. If a continuous-time real-valued stochastic process meets certain moment conditions on its increments, then the Kolmogorov continuity theorem says that there exists a modification of this process that has continuous sample paths with probability one, so the stochastic process has a continuous modification or version. The theorem can also be generalized to random fields so the index set is n-dimensional Euclidean space as well as to stochastic processes with metric spaces as their state spaces.


Indistinguishable

Two stochastic processes X and Y defined on the same probability space (\Omega,\mathcal,P) with the same index set T and set space S are said be indistinguishable if the following
P(X_t=Y_t \text t\in T )=1 ,
holds. If two X and Y are modifications of each other and are almost surely continuous, then X and Y are indistinguishable.


Separability

Separability is a property of a stochastic process based on its index set in relation to the probability measure. The property is assumed so that functionals of stochastic processes or random fields with uncountable index sets can form random variables. For a stochastic process to be separable, in addition to other conditions, its index set must be a separable space, which means that the index set has a dense countable subset. More precisely, a real-valued continuous-time stochastic process X with a probability space (\Omega,,P) is separable if its index set T has a dense countable subset U\subset T and there is a set \Omega_0 \subset \Omega of probability zero, so P(\Omega_0)=0, such that for every open set G\subset T and every closed set F\subset \textstyle R =(-\infty,\infty) , the two events \ and \ differ from each other at most on a subset of \Omega_0. The definition of separability can also be stated for other index sets and state spaces,, p. 22 such as in the case of random fields, where the index set as well as the state space can be n-dimensional Euclidean space. The concept of separability of a stochastic process was introduced by Joseph Doob,. The underlying idea of separability is to make a countable set of points of the index set determine the properties of the stochastic process. Any stochastic process with a countable index set already meets the separability conditions, so discrete-time stochastic processes are always separable. A theorem by Doob, sometimes known as Doob's separability theorem, says that any real-valued continuous-time stochastic process has a separable modification. Versions of this theorem also exist for more general stochastic processes with index sets and state spaces other than the real line.


Independence

Two stochastic processes X and Y defined on the same probability space (\Omega,\mathcal,P) with the same index set T are said be independent if for all n \in \mathbb and for every choice of epochs t_1,\ldots,t_n \in T, the random vectors \left( X(t_1),\ldots,X(t_n) \right) and \left( Y(t_1),\ldots,Y(t_n) \right) are independent.Lapidoth, Amos, ''A Foundation in Digital Communication'', Cambridge University Press, 2009.


Uncorrelatedness

Two stochastic processes \left\ and \left\ are called uncorrelated if their cross-covariance \operatorname_(t_1,t_2) = \operatorname \left \left( X(t_1)- \mu_X(t_1) \right) \left( Y(t_2)- \mu_Y(t_2) \right) \right/math> is zero for all times.Kun Il Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications, Springer, 2018, 978-3-319-68074-3 Formally: :\left\,\left\ \text \quad \iff \quad \operatorname_(t_1,t_2) = 0 \quad \forall t_1,t_2.


Independence implies uncorrelatedness

If two stochastic processes X and Y are independent, then they are also uncorrelated.


Orthogonality

Two stochastic processes \left\ and \left\ are called orthogonal if their cross-correlation \operatorname_(t_1,t_2) = \operatorname (t_1) \overline/math> is zero for all times. Formally: :\left\,\left\ \text \quad \iff \quad \operatorname_(t_1,t_2) = 0 \quad \forall t_1,t_2.


Skorokhod space

A Skorokhod space, also written as Skorohod space, is a mathematical space of all the functions that are right-continuous with left limits, defined on some interval of the real line such as ,1/math> or [0,\infty), and take values on the real line or on some metric space., p. 24 Such functions are known as càdlàg or cadlag functions, based on the acronym of the French phrase ''continue à droite, limite à gauche''. A Skorokhod function space, introduced by Anatoliy Skorokhod, is often denoted with the letter D, so the function space is also referred to as space D. The notation of this function space can also include the interval on which all the càdlàg functions are defined, so, for example, D ,1/math> denotes the space of càdlàg functions defined on the unit interval ,1/math>. Skorokhod function spaces are frequently used in the theory of stochastic processes because it often assumed that the sample functions of continuous-time stochastic processes belong to a Skorokhod space. Such spaces contain continuous functions, which correspond to sample functions of the Wiener process. But the space also has functions with discontinuities, which means that the sample functions of stochastic processes with jumps, such as the Poisson process (on the real line), are also members of this space.


Regularity

In the context of mathematical construction of stochastic processes, the term regularity is used when discussing and assuming certain conditions for a stochastic process to resolve possible construction issues. For example, to study stochastic processes with uncountable index sets, it is assumed that the stochastic process adheres to some type of regularity condition such as the sample functions being continuous.


Further examples


Markov processes and chains

Markov processes are stochastic processes, traditionally in discrete or continuous time, that have the Markov property, which means the next value of the Markov process depends on the current value, but it is conditionally independent of the previous values of the stochastic process. In other words, the behavior of the process in the future is stochastically independent of its behavior in the past, given the current state of the process. The Brownian motion process and the Poisson process (in one dimension) are both examples of Markov processes in continuous time, while random walks on the integers and the gambler's ruin problem are examples of Markov processes in discrete time. A Markov chain is a type of Markov process that has either discrete state space or discrete index set (often representing time), but the precise definition of a Markov chain varies. For example, it is common to define a Markov chain as a Markov process in either discrete or continuous time with a countable state space (thus regardless of the nature of time), but it has been also common to define a Markov chain as having discrete time in either countable or continuous state space (thus regardless of the state space). It has been argued that the first definition of a Markov chain, where it has discrete time, now tends to be used, despite the second definition having been used by researchers like Joseph Doob and
Kai Lai Chung Kai Lai Chung (traditional Chinese: 鍾開萊; simplified Chinese: 钟开莱; September 19, 1917 – June 2, 2009) was a Chinese-American mathematician known for his significant contributions to modern probability theory. Biography Chung wa ...
. Markov processes form an important class of stochastic processes and have applications in many areas. For example, they are the basis for a general stochastic simulation method known as Markov chain Monte Carlo, which is used for simulating random objects with specific probability distributions, and has found application in
Bayesian statistics Bayesian statistics is a theory in the field of statistics based on the Bayesian interpretation of probability where probability expresses a ''degree of belief'' in an event. The degree of belief may be based on prior knowledge about the event, ...
. The concept of the Markov property was originally for stochastic processes in continuous and discrete time, but the property has been adapted for other index sets such as n-dimensional Euclidean space, which results in collections of random variables known as Markov random fields.


Martingale

A martingale is a discrete-time or continuous-time stochastic process with the property that, at every instant, given the current value and all the past values of the process, the conditional expectation of every future value is equal to the current value. In discrete time, if this property holds for the next value, then it holds for all future values. The exact mathematical definition of a martingale requires two other conditions coupled with the mathematical concept of a filtration, which is related to the intuition of increasing available information as time passes. Martingales are usually defined to be real-valued, but they can also be complex-valued or even more general. A symmetric random walk and a Wiener process (with zero drift) are both examples of martingales, respectively, in discrete and continuous time. For a sequence of independent and identically distributed random variables X_1, X_2, X_3, \dots with zero mean, the stochastic process formed from the successive partial sums X_1,X_1+ X_2, X_1+ X_2+X_3, \dots is a discrete-time martingale. In this aspect, discrete-time martingales generalize the idea of partial sums of independent random variables. Martingales can also be created from stochastic processes by applying some suitable transformations, which is the case for the homogeneous Poisson process (on the real line) resulting in a martingale called the ''compensated Poisson process''. Martingales can also be built from other martingales. For example, there are martingales based on the martingale the Wiener process, forming continuous-time martingales. Martingales mathematically formalize the idea of a fair game, and they were originally developed to show that it is not possible to win a fair game. But now they are used in many areas of probability, which is one of the main reasons for studying them. Many problems in probability have been solved by finding a martingale in the problem and studying it. Martingales will converge, given some conditions on their moments, so they are often used to derive convergence results, due largely to martingale convergence theorems. Martingales have many applications in statistics, but it has been remarked that its use and application are not as widespread as it could be in the field of statistics, particularly statistical inference. They have found applications in areas in probability theory such as queueing theory and Palm calculus and other fields such as economics and finance.


Lévy process

Lévy processes are types of stochastic processes that can be considered as generalizations of random walks in continuous time. These processes have many applications in fields such as finance, fluid mechanics, physics and biology. The main defining characteristics of these processes are their stationarity and independence properties, so they were known as ''processes with stationary and independent increments''. In other words, a stochastic process X is a Lévy process if for n non-negatives numbers, 0\leq t_1\leq \dots \leq t_n, the corresponding n-1 increments
X_-X_, \dots , X_-X_,
are all independent of each other, and the distribution of each increment only depends on the difference in time. A Lévy process can be defined such that its state space is some abstract mathematical space, such as a Banach space, but the processes are often defined so that they take values in Euclidean space. The index set is the non-negative numbers, so I= subordinators are all Lévy processes.


Random field

A random field is a collection of random variables indexed by a n-dimensional Euclidean space or some manifold. In general, a random field can be considered an example of a stochastic or random process, where the index set is not necessarily a subset of the real line. But there is a convention that an indexed collection of random variables is called a random field when the index has two or more dimensions. If the specific definition of a stochastic process requires the index set to be a subset of the real line, then the random field can be considered as a generalization of stochastic process.


Point process

A point process is a collection of points randomly located on some mathematical space such as the real line, n-dimensional Euclidean space, or more abstract spaces. Sometimes the term ''point process'' is not preferred, as historically the word ''process'' denoted an evolution of some system in time, so a point process is also called a random point field. There are different interpretations of a point process, such a random counting measure or a random set. Some authors regard a point process and stochastic process as two different objects such that a point process is a random object that arises from or is associated with a stochastic process, though it has been remarked that the difference between point processes and stochastic processes is not clear. Other authors consider a point process as a stochastic process, where the process is indexed by sets of the underlying space on which it is defined, such as the real line or n-dimensional Euclidean space. Other stochastic processes such as renewal and counting processes are studied in the theory of point processes.


History


Early probability theory

Probability theory has its origins in games of chance, which have a long history, with some games being played thousands of years ago, but very little analysis on them was done in terms of probability. The year 1654 is often considered the birth of probability theory when French mathematicians Pierre Fermat and Blaise Pascal had a written correspondence on probability, motivated by a Problem of points, gambling problem. But there was earlier mathematical work done on the probability of gambling games such as ''Liber de Ludo Aleae'' by
Gerolamo Cardano Gerolamo Cardano (; also Girolamo or Geronimo; french: link=no, Jérôme Cardan; la, Hieronymus Cardanus; 24 September 1501– 21 September 1576) was an Italian polymath, whose interests and proficiencies ranged through those of mathematician, ...
, written in the 16th century but posthumously published later in 1663. After Cardano, Jakob Bernoulli wrote Ars Conjectandi, which is considered a significant event in the history of probability theory. Bernoulli's book was published, also posthumously, in 1713 and inspired many mathematicians to study probability. But despite some renowned mathematicians contributing to probability theory, such as Pierre-Simon Laplace, Abraham de Moivre, Carl Gauss, Siméon Poisson and Pafnuty Chebyshev, most of the mathematical community did not consider probability theory to be part of mathematics until the 20th century.


Statistical mechanics

In the physical sciences, scientists developed in the 19th century the discipline of
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic ...
, where physical systems, such as containers filled with gases, can be regarded or treated mathematically as collections of many moving particles. Although there were attempts to incorporate randomness into statistical physics by some scientists, such as Rudolf Clausius, most of the work had little or no randomness. This changed in 1859 when
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
contributed significantly to the field, more specifically, to the kinetic theory of gases, by presenting work where he assumed the gas particles move in random directions at random velocities. The kinetic theory of gases and statistical physics continued to be developed in the second half of the 19th century, with work done chiefly by Clausius, Ludwig Boltzmann and
Josiah Gibbs Josiah Willard Gibbs (; February 11, 1839 – April 28, 1903) was an American scientist who made significant theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynamics was instrumental in t ...
, which would later have an influence on
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
's mathematical model for
Brownian movement Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position insid ...
.


Measure theory and probability theory

At the
International Congress of Mathematicians The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the Nevanlinna Prize (to be rename ...
in
Paris Paris () is the capital and most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), making it the 30th most densely populated city in the world in 2020. ...
in 1900, David Hilbert presented a list of mathematical problems, where his sixth problem asked for a mathematical treatment of physics and probability involving axioms. Around the start of the 20th century, mathematicians developed measure theory, a branch of mathematics for studying integrals of mathematical functions, where two of the founders were French mathematicians, Henri Lebesgue and Émile Borel. In 1925 another French mathematician Paul Lévy published the first probability book that used ideas from measure theory. In 1920s fundamental contributions to probability theory were made in the Soviet Union by mathematicians such as Sergei Bernstein, Aleksandr Khinchin, and Andrei Kolmogorov. Kolmogorov published in 1929 his first attempt at presenting a mathematical foundation, based on measure theory, for probability theory. In the early 1930s Khinchin and Kolmogorov set up probability seminars, which were attended by researchers such as Eugene Slutsky and Nikolai Smirnov, and Khinchin gave the first mathematical definition of a stochastic process as a set of random variables indexed by the real line.


Birth of modern probability theory

In 1933 Andrei Kolmogorov published in German, his book on the foundations of probability theory titled ''Grundbegriffe der Wahrscheinlichkeitsrechnung'', where Kolmogorov used measure theory to develop an axiomatic framework for probability theory. The publication of this book is now widely considered to be the birth of modern probability theory, when the theories of probability and stochastic processes became parts of mathematics. After the publication of Kolmogorov's book, further fundamental work on probability theory and stochastic processes was done by Khinchin and Kolmogorov as well as other mathematicians such as Joseph Doob, William Feller, Maurice Fréchet, Paul Lévy, Wolfgang Doeblin, and
Harald Cramér Harald Cramér (; 25 September 1893 – 5 October 1985) was a Swedish mathematician, actuary, and statistician, specializing in mathematical statistics and probabilistic number theory. John Kingman described him as "one of the giants of statist ...
. Decades later Cramér referred to the 1930s as the "heroic period of mathematical probability theory".
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
greatly interrupted the development of probability theory, causing, for example, the migration of Feller from
Sweden Sweden, ; fi, Ruotsi; fit, Ruotti; se, Ruoŧŧa; smj, Svierik; sje, Sverji; sju, Sverje; sma, Sveerje or ; yi, שוועדן, Shvedn; rmu, Svedikko; rmf, Sveittiko. formally the Kingdom of Sweden, is a Nordic countries, Nordic cou ...
to the
United States of America The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territor ...
and the death of Doeblin, considered now a pioneer in stochastic processes.


Stochastic processes after World War II

After World War II the study of probability theory and stochastic processes gained more attention from mathematicians, with significant contributions made in many areas of probability and mathematics as well as the creation of new areas. Starting in the 1940s,
Kiyosi Itô was a Japanese mathematician who made fundamental contributions to probability theory, in particular, the theory of stochastic processes. He invented the concept of stochastic integral and stochastic differential equation, and is known as the fo ...
published papers developing the field of stochastic calculus, which involves stochastic integrals and stochastic differential equations based on the Wiener or Brownian motion process. Also starting in the 1940s, connections were made between stochastic processes, particularly martingales, and the mathematical field of potential theory, with early ideas by Shizuo Kakutani and then later work by Joseph Doob. Further work, considered pioneering, was done by
Gilbert Hunt Gilbert Agnew Hunt, Jr. (March 4, 1916 – May 30, 2008) was an American mathematician and amateur tennis player active in the 1930s and 1940s. Early life and education Hunt was born in Washington, D.C. and attended Eastern High School (Washing ...
in the 1950s, connecting Markov processes and potential theory, which had a significant effect on the theory of Lévy processes and led to more interest in studying Markov processes with methods developed by Itô. In 1953 Doob published his book ''Stochastic processes'', which had a strong influence on the theory of stochastic processes and stressed the importance of measure theory in probability. Doob also chiefly developed the theory of martingales, with later substantial contributions by
Paul-André Meyer Paul-André Meyer (21 August 1934 – 30 January 2003) was a French mathematician, who played a major role in the development of the general theory of stochastic processes. He worked at the Institut de Recherche Mathématique (IRMA) in Str ...
. Earlier work had been carried out by Sergei Bernstein, Paul Lévy and
Jean Ville Jean Ville, also known under the names Jean-André Ville et André Ville, born 24 June 1910 in Marseille, died 22 January 1989 in Blois, was a French mathematician. He is known for having proved an extension of von Neumman's minimax theorem, as we ...
, the latter adopting the term martingale for the stochastic process. Methods from the theory of martingales became popular for solving various probability problems. Techniques and theory were developed to study Markov processes and then applied to martingales. Conversely, methods from the theory of martingales were established to treat Markov processes. Other fields of probability were developed and used to study stochastic processes, with one main approach being the theory of large deviations. The theory has many applications in statistical physics, among other fields, and has core ideas going back to at least the 1930s. Later in the 1960s and 1970s fundamental work was done by Alexander Wentzell in the Soviet Union and Monroe D. Donsker and
Srinivasa Varadhan Sathamangalam Ranga Iyengar Srinivasa Varadhan FRS (born 2 January 1940) is an Indian American mathematician, widely recognised as one of the most influential mathematicians of the 20th century. He is known for his fundamental contributions to ...
in the United States of America, which would later result in Varadhan winning the 2007 Abel Prize. In the 1990s and 2000s the theories of
Schramm–Loewner evolution In probability theory, the Schramm–Loewner evolution with parameter ''κ'', also known as stochastic Loewner evolution (SLE''κ''), is a family of random planar curves that have been proven to be the scaling limit of a variety of two-dimensiona ...
and rough paths were introduced and developed to study stochastic processes and other mathematical objects in probability theory, which respectively resulted in
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award h ...
s being awarded to
Wendelin Werner Wendelin Werner (born 23 September 1968) is a German-born French mathematician working on random processes such as self-avoiding random walks, Brownian motion, Schramm–Loewner evolution, and related theories in probability theory and mathematic ...
in 2008 and to
Martin Hairer Sir Martin Hairer (born 14 November 1975) is an Austrian-British mathematician working in the field of stochastic analysis, in particular stochastic partial differential equations. He is Professor of Mathematics at EPFL (École Polytechnique F ...
in 2014. The theory of stochastic processes still continues to be a focus of research, with yearly international conferences on the topic of stochastic processes.


Discoveries of specific stochastic processes

Although Khinchin gave mathematical definitions of stochastic processes in the 1930s, specific stochastic processes had already been discovered in different settings, such as the Brownian motion process and the Poisson process. Some families of stochastic processes such as point processes or renewal processes have long and complex histories, stretching back centuries.


Bernoulli process

The Bernoulli process, which can serve as a mathematical model for flipping a biased coin, is possibly the first stochastic process to have been studied. The process is a sequence of independent Bernoulli trials, which are named after
Jackob Bernoulli Jacob Bernoulli (also known as James or Jacques; – 16 August 1705) was one of the many prominent mathematicians in the Bernoulli family. He was an early proponent of Leibnizian calculus and sided with Gottfried Wilhelm Leibniz during the Leib ...
who used them to study games of chance, including probability problems proposed and studied earlier by Christiaan Huygens. Bernoulli's work, including the Bernoulli process, were published in his book ''Ars Conjectandi'' in 1713.


Random walks

In 1905
Karl Pearson Karl Pearson (; born Carl Pearson; 27 March 1857 – 27 April 1936) was an English mathematician and biostatistician. He has been credited with establishing the discipline of mathematical statistics. He founded the world's first university st ...
coined the term ''random walk'' while posing a problem describing a random walk on the plane, which was motivated by an application in biology, but such problems involving random walks had already been studied in other fields. Certain gambling problems that were studied centuries earlier can be considered as problems involving random walks. For example, the problem known as the ''Gambler's ruin'' is based on a simple random walk, and is an example of a random walk with absorbing barriers. Pascal, Fermat and Huyens all gave numerical solutions to this problem without detailing their methods, and then more detailed solutions were presented by Jakob Bernoulli and Abraham de Moivre. For random walks in n-dimensional integer lattices, George Pólya published, in 1919 and 1921, work where he studied the probability of a symmetric random walk returning to a previous position in the lattice. Pólya showed that a symmetric random walk, which has an equal probability to advance in any direction in the lattice, will return to a previous position in the lattice an infinite number of times with probability one in one and two dimensions, but with probability zero in three or higher dimensions.


Wiener process

The Wiener process or Brownian motion process has its origins in different fields including statistics, finance and physics. In 1880,
Thorvald Thiele Thorvald Nicolai Thiele (24 December 1838 – 26 September 1910) was a Danish astronomer and director of the Copenhagen Observatory. He was also an actuary and mathematician, most notable for his work in statistics, interpolation and the three ...
wrote a paper on the method of least squares, where he used the process to study the errors of a model in time-series analysis. The work is now considered as an early discovery of the statistical method known as Kalman filtering, but the work was largely overlooked. It is thought that the ideas in Thiele's paper were too advanced to have been understood by the broader mathematical and statistical community at the time. The French mathematician Louis Bachelier used a Wiener process in his 1900 thesis in order to model price changes on the Paris Bourse, a
stock exchange A stock exchange, securities exchange, or bourse is an exchange where stockbrokers and traders can buy and sell securities, such as shares of stock, bonds and other financial instruments. Stock exchanges may also provide facilities for th ...
, without knowing the work of Thiele. It has been speculated that Bachelier drew ideas from the random walk model of
Jules Regnault Jules Augustin Frédéric Regnault (; 1 February 1834, Béthencourt – 9 December 1894, Paris) was a French stock broker's assistant who first suggested a modern theory of stock price changes i''Calcul des Chances et Philosophie de la Bourse' ...
, but Bachelier did not cite him, and Bachelier's thesis is now considered pioneering in the field of financial mathematics. It is commonly thought that Bachelier's work gained little attention and was forgotten for decades until it was rediscovered in the 1950s by the Leonard Savage, and then become more popular after Bachelier's thesis was translated into English in 1964. But the work was never forgotten in the mathematical community, as Bachelier published a book in 1912 detailing his ideas, which was cited by mathematicians including Doob, Feller and Kolmogorov. The book continued to be cited, but then starting in the 1960s the original thesis by Bachelier began to be cited more than his book when economists started citing Bachelier's work. In 1905
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
published a paper where he studied the physical observation of Brownian motion or movement to explain the seemingly random movements of particles in liquids by using ideas from the
kinetic theory of gases Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to its motion Art and enter ...
. Einstein derived a differential equation, known as a diffusion equation, for describing the probability of finding a particle in a certain region of space. Shortly after Einstein's first paper on Brownian movement,
Marian Smoluchowski Marian Smoluchowski (; 28 May 1872 – 5 September 1917) was a Polish physicist who worked in the Polish territories of the Austro-Hungarian Empire. He was a pioneer of statistical physics, and an avid mountaineer. Life Born into an upper-c ...
published work where he cited Einstein, but wrote that he had independently derived the equivalent results by using a different method. Einstein's work, as well as experimental results obtained by
Jean Perrin Jean Baptiste Perrin (30 September 1870 – 17 April 1942) was a French physicist who, in his studies of the Brownian motion of minute particles suspended in liquids ( sedimentation equilibrium), verified Albert Einstein’s explanation of this ...
, later inspired Norbert Wiener in the 1920s to use a type of measure theory, developed by
Percy Daniell Percy John Daniell (9 January 1889 – 25 May 1946) was a pure and applied mathematician. Early life and education Daniell was born in Valparaiso, Chile. His family returned to England in 1895. Daniell attended King Edward's School, Birmingham ...
, and Fourier analysis to prove the existence of the Wiener process as a mathematical object.


Poisson process

The Poisson process is named after Siméon Poisson, due to its definition involving the Poisson distribution, but Poisson never studied the process. There are a number of claims for early uses or discoveries of the Poisson process. At the beginning of the 20th century the Poisson process would arise independently in different situations. In Sweden 1903, Filip Lundberg published a thesis containing work, now considered fundamental and pioneering, where he proposed to model insurance claims with a homogeneous Poisson process. Another discovery occurred in
Denmark ) , song = ( en, "King Christian stood by the lofty mast") , song_type = National and royal anthem , image_map = EU-Denmark.svg , map_caption = , subdivision_type = Sovereign state , subdivision_name = Kingdom of Denmark , establishe ...
in 1909 when
A.K. Erlang Agner Krarup Erlang (1 January 1878 – 3 February 1929) was a Danish mathematician, statistician and engineer, who invented the fields of traffic engineering and queueing theory. By the time of his relatively early death at the age of 51, Erl ...
derived the Poisson distribution when developing a mathematical model for the number of incoming phone calls in a finite time interval. Erlang was not at the time aware of Poisson's earlier work and assumed that the number phone calls arriving in each interval of time were independent to each other. He then found the limiting case, which is effectively recasting the Poisson distribution as a limit of the binomial distribution. In 1910 Ernest Rutherford and Hans Geiger published experimental results on counting alpha particles. Motivated by their work,
Harry Bateman Harry Bateman FRS (29 May 1882 – 21 January 1946) was an English mathematician with a specialty in differential equations of mathematical physics. With Ebenezer Cunningham, he expanded the views of spacetime symmetry of Lorentz and Poin ...
studied the counting problem and derived Poisson probabilities as a solution to a family of differential equations, resulting in the independent discovery of the Poisson process. After this time there were many studies and applications of the Poisson process, but its early history is complicated, which has been explained by the various applications of the process in numerous fields by biologists, ecologists, engineers and various physical scientists.


Markov processes

Markov processes and Markov chains are named after Andrey Markov who studied Markov chains in the early 20th century. Markov was interested in studying an extension of independent random sequences. In his first paper on Markov chains, published in 1906, Markov showed that under certain conditions the average outcomes of the Markov chain would converge to a fixed vector of values, so proving a weak law of large numbers without the independence assumption, which had been commonly regarded as a requirement for such mathematical laws to hold. Markov later used Markov chains to study the distribution of vowels in Eugene Onegin, written by Alexander Pushkin, and proved a central limit theorem for such chains. In 1912 Poincaré studied Markov chains on
finite group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or ma ...
s with an aim to study card shuffling. Other early uses of Markov chains include a diffusion model, introduced by Paul and
Tatyana Ehrenfest Tatyana Pavlovna Ehrenfest, later van Aardenne-Ehrenfest, (Vienna, October 28, 1905 – Dordrecht, November 29, 1984) was a Dutch mathematician. She was the daughter of Paul Ehrenfest (1880–1933) and Tatyana Afanasyeva, Tatyana Alexeyevna Afanas ...
in 1907, and a branching process, introduced by
Francis Galton Sir Francis Galton, FRS FRAI (; 16 February 1822 – 17 January 1911), was an English Victorian era polymath: a statistician, sociologist, psychologist, anthropologist, tropical explorer, geographer, inventor, meteorologist, proto- ...
and
Henry William Watson Rev. Henry William Watson Fellow of the Royal Society, FRS (25 February 1827, Marylebone, London11 January 1903, Berkswell near Coventry) was a mathematician and author of a number of mathematics books. He was an ordained priest and Cambridge Apo ...
in 1873, preceding the work of Markov. After the work of Galton and Watson, it was later revealed that their branching process had been independently discovered and studied around three decades earlier by Irénée-Jules Bienaymé. Starting in 1928, Maurice Fréchet became interested in Markov chains, eventually resulting in him publishing in 1938 a detailed study on Markov chains. Andrei Kolmogorov developed in a 1931 paper a large part of the early theory of continuous-time Markov processes. Kolmogorov was partly inspired by Louis Bachelier's 1900 work on fluctuations in the stock market as well as
Norbert Wiener Norbert Wiener (November 26, 1894 – March 18, 1964) was an American mathematician and philosopher. He was a professor of mathematics at the Massachusetts Institute of Technology (MIT). A child prodigy, Wiener later became an early researcher i ...
's work on Einstein's model of Brownian movement. He introduced and studied a particular set of Markov processes known as diffusion processes, where he derived a set of differential equations describing the processes. Independent of Kolmogorov's work,
Sydney Chapman Sydney Chapman may refer to: *Sir Sydney Chapman (economist) (1871–1951), British economist and civil servant * Sydney Chapman (mathematician) (1888–1970), FRS, British mathematician *Sir Sydney Chapman (politician) Sir Sydney Brookes Chapma ...
derived in a 1928 paper an equation, now called the
Chapman–Kolmogorov equation In mathematics, specifically in the theory of Markovian stochastic processes in probability theory, the Chapman–Kolmogorov equation(CKE) is an identity relating the joint probability distributions of different sets of coordinates on a stochastic p ...
, in a less mathematically rigorous way than Kolmogorov, while studying Brownian movement. The differential equations are now called the Kolmogorov equations or the Kolmogorov–Chapman equations. Other mathematicians who contributed significantly to the foundations of Markov processes include William Feller, starting in the 1930s, and then later Eugene Dynkin, starting in the 1950s.


Lévy processes

Lévy processes such as the Wiener process and the Poisson process (on the real line) are named after Paul Lévy who started studying them in the 1930s, but they have connections to infinitely divisible distributions going back to the 1920s. In a 1932 paper Kolmogorov derived a characteristic function for random variables associated with Lévy processes. This result was later derived under more general conditions by Lévy in 1934, and then Khinchin independently gave an alternative form for this characteristic function in 1937. In addition to Lévy, Khinchin and Kolomogrov, early fundamental contributions to the theory of Lévy processes were made by Bruno de Finetti and
Kiyosi Itô was a Japanese mathematician who made fundamental contributions to probability theory, in particular, the theory of stochastic processes. He invented the concept of stochastic integral and stochastic differential equation, and is known as the fo ...
.


Mathematical construction

In mathematics, constructions of mathematical objects are needed, which is also the case for stochastic processes, to prove that they exist mathematically. There are two main approaches for constructing a stochastic process. One approach involves considering a measurable space of functions, defining a suitable measurable mapping from a probability space to this measurable space of functions, and then deriving the corresponding finite-dimensional distributions. Another approach involves defining a collection of random variables to have specific finite-dimensional distributions, and then using Kolmogorov's existence theorem to prove a corresponding stochastic process exists. This theorem, which is an existence theorem for measures on infinite product spaces, says that if any finite-dimensional distributions satisfy two conditions, known as ''consistency conditions'', then there exists a stochastic process with those finite-dimensional distributions.


Construction issues

When constructing continuous-time stochastic processes certain mathematical difficulties arise, due to the uncountable index sets, which do not occur with discrete-time processes. One problem is that is it possible to have more than one stochastic process with the same finite-dimensional distributions. For example, both the left-continuous modification and the right-continuous modification of a Poisson process have the same finite-dimensional distributions. This means that the distribution of the stochastic process does not, necessarily, specify uniquely the properties of the sample functions of the stochastic process. Another problem is that functionals of continuous-time process that rely upon an uncountable number of points of the index set may not be measurable, so the probabilities of certain events may not be well-defined. For example, the supremum of a stochastic process or random field is not necessarily a well-defined random variable. For a continuous-time stochastic process X, other characteristics that depend on an uncountable number of points of the index set T include: * a sample function of a stochastic process X is a continuous function of t\in T; * a sample function of a stochastic process X is a bounded function of t\in T; and * a sample function of a stochastic process X is an increasing function of t\in T. To overcome these two difficulties, different assumptions and approaches are possible.


Resolving construction issues

One approach for avoiding mathematical construction issues of stochastic processes, proposed by Joseph Doob, is to assume that the stochastic process is separable. Separability ensures that infinite-dimensional distributions determine the properties of sample functions by requiring that sample functions are essentially determined by their values on a dense countable set of points in the index set. Furthermore, if a stochastic process is separable, then functionals of an uncountable number of points of the index set are measurable and their probabilities can be studied. Another approach is possible, originally developed by Anatoliy Skorokhod and Andrei Kolmogorov, for a continuous-time stochastic process with any metric space as its state space. For the construction of such a stochastic process, it is assumed that the sample functions of the stochastic process belong to some suitable function space, which is usually the Skorokhod space consisting of all right-continuous functions with left limits. This approach is now more used than the separability assumption, but such a stochastic process based on this approach will be automatically separable. Although less used, the separability assumption is considered more general because every stochastic process has a separable version. It is also used when it is not possible to construct a stochastic process in a Skorokhod space. For example, separability is assumed when constructing and studying random fields, where the collection of random variables is now indexed by sets other than the real line such as n-dimensional Euclidean space.


See also


Notes


References


Further reading


Articles

* * * * *


Books

* * * * * * * * *


External links

* {{DEFAULTSORT:Stochastic Process Stochastic models Statistical data types