
In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the snub cube, or snub cuboctahedron, is an
Archimedean solid
In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are composed ...
with 38 faces: 6
square
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
s and 32
equilateral triangle
In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
s. It has 60
edges
Edge or EDGE may refer to:
Technology Computing
* Edge computing, a network load-balancing system
* Edge device, an entry point to a computer network
* Adobe Edge, a graphical development application
* Microsoft Edge, a web browser developed by ...
and 24
vertices.
It is a
chiral polyhedron; that is, it has two distinct forms, which are
mirror image
A mirror image (in a plane mirror) is a reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical effect it results from reflection off from substances ...
s (or "
enantiomorphs
In geometry, a figure is chiral (and said to have chirality) if it is not identical to its mirror image, or, more precisely, if it cannot be mapped to its mirror image by rotations and translations alone. An object that is not chiral is said to be ...
") of each other. The union of both forms is a
compound of two snub cubes
This uniform polyhedron compound is a composition of the 2 enantiomers of the snub cube. As a holosnub, it is represented by Schläfli symbol βr and Coxeter diagram .
The vertex arrangement of this compound is shared by a convex nonuniform t ...
, and the
convex hull of both sets of vertices is a
truncated cuboctahedron
In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its fa ...
.
Kepler
Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws of ...
first named it in
Latin
Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power ...
as cubus simus in 1619 in his
Harmonices Mundi
''Harmonice Mundi (Harmonices mundi libri V)''The full title is ''Ioannis Keppleri Harmonices mundi libri V'' (''The Five Books of Johannes Kepler's The Harmony of the World''). (Latin: ''The Harmony of the World'', 1619) is a book by Johannes ...
.
H. S. M. Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington t ...
, noting it could be derived equally from the octahedron as the cube, called it snub cuboctahedron, with a vertical extended
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mor ...
, and representing an
alternation of a
truncated cuboctahedron
In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its fa ...
, which has Schläfli symbol
.
Dimensions
For a snub cube with edge length 1, its surface area and volume are:
:
where ''t'' is the
tribonacci constant In mathematics, the Fibonacci numbers form a sequence defined recursively by:
:F_n =
\begin
0 & n = 0 \\
1 & n = 1 \\
F_ + F_ & n > 1
\end
That is, after two starting values, each number is the sum of the two preceding numbers.
The Fibonacci sequ ...
:
If the original snub cube has edge length 1, its dual
pentagonal icositetrahedron
In geometry, a pentagonal icositetrahedron or pentagonal icosikaitetrahedron is a Catalan solid which is the dual of the snub cube. In crystallography it is also called a gyroid.
It has two distinct forms, which are mirror images (or "enantiomor ...
has side lengths
:
.
In general, the volume of a snub cube with side length
can be found with this formula, using the ''t'' as the tribonacci constant above:
.
Cartesian coordinates
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
for the
vertices of a snub cube are all the
even permutation
In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any total ...
s of
:(±1, ±, ±''t'')
with an even number of plus signs, along with all the
odd permutation
In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any total o ...
s with an odd number of plus signs, where ''t'' ≈ 1.83929 is the
tribonacci constant In mathematics, the Fibonacci numbers form a sequence defined recursively by:
:F_n =
\begin
0 & n = 0 \\
1 & n = 1 \\
F_ + F_ & n > 1
\end
That is, after two starting values, each number is the sum of the two preceding numbers.
The Fibonacci sequ ...
. Taking the even permutations with an odd number of plus signs, and the odd permutations with an even number of plus signs, gives a different snub cube, the mirror image. Taking all of them together yields the
compound of two snub cubes
This uniform polyhedron compound is a composition of the 2 enantiomers of the snub cube. As a holosnub, it is represented by Schläfli symbol βr and Coxeter diagram .
The vertex arrangement of this compound is shared by a convex nonuniform t ...
.
This snub cube has edges of length
, a number which satisfies the equation
:
and can be written as
:
To get a snub cube with unit edge length, divide all the coordinates above by the value ''α'' given above.
Orthogonal projections

The ''snub cube'' has two special
orthogonal projection
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if i ...
s, centered, on two types of faces: triangles, and squares, correspond to the A
2 and B
2 Coxeter plane
In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter.
Definitions
Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there a ...
s.
Spherical tiling
The snub cube can also be represented as a
spherical tiling
In geometry, a spherical polyhedron or spherical tiling is a tiling of the sphere in which the surface is divided or partitioned by great arcs into bounded regions called spherical polygons. Much of the theory of symmetrical polyhedra is most ...
, and projected onto the plane via a
stereographic projection
In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (the ''projection plane'') perpendicular to the diameter th ...
. This projection is
conformal
Conformal may refer to:
* Conformal (software), in ASIC Software
* Conformal coating in electronics
* Conformal cooling channel, in injection or blow moulding
* Conformal field theory in physics, such as:
** Boundary conformal field theory ...
, preserving angles but not areas or lengths. Great circle arcs (geodesics) on the sphere are projected as circular arcs on the plane.
Geometric relations
The snub cube can be generated by taking the six faces of the cube,
pulling them outward so they no longer touch, then giving them each a small rotation on their centers (all clockwise or all counter-clockwise) until the spaces between can be filled with
equilateral triangle
In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
s.
The snub cube can also be derived from the
truncated cuboctahedron
In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its fa ...
by the process of
alternation. 24 vertices of the truncated cuboctahedron form a polyhedron topologically equivalent to the snub cube; the other 24 form its mirror-image. The resulting polyhedron is
vertex-transitive
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of fa ...
but not uniform.
An "improved" snub cube, with a slightly smaller square face and slightly larger triangular faces compared to Archimedes' uniform snub cube, is useful as a
spherical design A spherical design, part of combinatorial design theory in mathematics, is a finite set of ''N'' points on the ''d''-dimensional unit ''d''-sphere ''Sd'' such that the average value of any polynomial ''f'' of degree ''t'' or less on the set equals ...
.
Related polyhedra and tilings
The snub cube is one of a family of uniform polyhedra related to the cube and regular octahedron.
This semiregular polyhedron is a member of a sequence of
snubbed polyhedra and tilings with vertex figure (3.3.3.3.''n'') and
Coxeter–Dynkin diagram
In geometry, a Coxeter–Dynkin diagram (or Coxeter diagram, Coxeter graph) is a graph with numerically labeled edges (called branches) representing the spatial relations between a collection of mirrors (or reflecting hyperplanes). It describes ...
. These figures and their duals have (''n''32) rotational
symmetry, being in the Euclidean plane for ''n'' = 6, and hyperbolic plane for any higher ''n''. The series can be considered to begin with n=2, with one set of faces degenerated into
digon
In geometry, a digon is a polygon with two sides ( edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visu ...
s.
The ''snub cube'' is second in a series of snub polyhedra and tilings with
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
3.3.4.3.''n''.
Snub cubical graph
In the
mathematical
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
graph theory
In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, a snub cubical graph is the
graph of vertices and edges of the ''snub cube'', one of the
Archimedean solid
In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are composed ...
s. It has 24
vertices and 60 edges, and is an
Archimedean graph
In the mathematical field of graph theory, an Archimedean graph is a graph that forms the skeleton of one of the Archimedean solids. There are 13 Archimedean graphs, and all of them are regular, polyhedral (and therefore by necessity also 3-verte ...
.
See also
*
Compound of two snub cubes
This uniform polyhedron compound is a composition of the 2 enantiomers of the snub cube. As a holosnub, it is represented by Schläfli symbol βr and Coxeter diagram .
The vertex arrangement of this compound is shared by a convex nonuniform t ...
*
Snub dodecahedron
In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.
The snub dodecahedron has 92 faces (the mo ...
*
Snub square tiling
In geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol is ''s''.
Conway calls it a snub quadrille, constructed by a snub operation applie ...
*
Truncated cube
In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices.
If the truncated cube has unit edge length, its dual triakis octahedron has edg ...
References
*
* (Section 3-9)
*
External links
*
**
*
The Uniform PolyhedraThe Encyclopedia of Polyhedra
{{Polyhedron navigator
Chiral polyhedra
Uniform polyhedra
Archimedean solids
Snub tilings