In the
mathematical
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
category theory, the category of sets, denoted as Set, is the
category
Category, plural categories, may refer to:
Philosophy and general uses
*Categorization, categories in cognitive science, information science and generally
* Category of being
* ''Categories'' (Aristotle)
* Category (Kant)
* Categories (Peirce) ...
whose
objects are
sets. The arrows or
morphism
In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphis ...
s between sets ''A'' and ''B'' are the
total function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly itself) to . The subset , that is, the domain of viewed as a function, is called the domain of definition of . If equals , that is, if is ...
s from ''A'' to ''B'', and the composition of morphisms is the
composition of functions
In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
.
Many other categories (such as the
category of groups
In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory.
Relation to other categories
T ...
, with
group homomorphisms as arrows) add structure to the objects of the category of sets and/or restrict the arrows to functions of a particular kind.
Properties of the category of sets
The axioms of a category are satisfied by Set because composition of functions is
associative
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
, and because every set ''X'' has an
identity function
Graph of the identity function on the real numbers
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
id
''X'' : ''X'' → ''X'' which serves as identity element for function composition.
The
epimorphism
In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms ,
: g_1 \circ f = g_2 \circ f ...
s in Set are the
surjective
In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of ...
maps, the
monomorphism
In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y.
In the more general setting of category theory, a monomorphis ...
s are the
injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contraposi ...
maps, and the
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
s are the
bijective
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
maps.
The
empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in oth ...
serves as the
initial object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism .
The dual notion is that of a terminal object (also called terminal element) ...
in Set with
empty functions as morphisms. Every
singleton is a
terminal object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism .
The dual notion is that of a terminal object (also called terminal element) ...
, with the functions mapping all elements of the source sets to the single target element as morphisms. There are thus no
zero objects in Set.
The category Set is
complete and co-complete. The
product in this category is given by the
cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is
: A\ ...
of sets. The
coproduct
In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The cop ...
is given by the
disjoint union
In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A ...
: given sets ''A''
''i'' where ''i'' ranges over some index set ''I'', we construct the coproduct as the union of ''A''
''i''× (the cartesian product with ''i'' serves to ensure that all the components stay disjoint).
Set is the prototype of a
concrete category
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category, ''see Relative concreteness below''). This functor makes it possible to think of the objects o ...
; other categories are concrete if they are "built on" Set in some well-defined way.
Every two-element set serves as a
subobject classifier in Set. The power object of a set ''A'' is given by its
power set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is ...
, and the
exponential object
In mathematics, specifically in category theory, an exponential object or map object is the categorical generalization of a function space in set theory. Categories with all finite products and exponential objects are called cartesian closed ca ...
of the sets ''A'' and ''B'' is given by the set of all functions from ''A'' to ''B''. Set is thus a
topos
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notio ...
(and in particular
cartesian closed
In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in math ...
and
exact in the sense of Barr).
Set is not
abelian
Abelian may refer to:
Mathematics Group theory
* Abelian group, a group in which the binary operation is commutative
** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms
* Metabelian group, a grou ...
,
additive nor
preadditive.
Every non-empty set is an
injective object in Set. Every set is a
projective object In category theory, the notion of a projective object generalizes the notion of a projective module. Projective objects in abelian categories are used in homological algebra. The dual notion of a projective object is that of an injective object ...
in Set (assuming the
axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
).
The
finitely presentable objects in Set are the finite sets. Since every set is a
direct limit
In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any cat ...
of its finite subsets, the category Set is a
locally finitely presentable category.
If ''C'' is an arbitrary category, the
contravariant functors from ''C'' to Set are often an important object of study. If ''A'' is an object of ''C'', then the functor from ''C'' to Set that sends ''X'' to Hom
''C''(''X'',''A'') (the set of morphisms in ''C'' from ''X'' to ''A'') is an example of such a functor. If ''C'' is a
small category (i.e. the collection of its objects forms a set), then the contravariant functors from ''C'' to Set, together with natural transformations as morphisms, form a new category, a
functor category In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object i ...
known as the category of
presheaves
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
on ''C''.
Foundations for the category of sets
In
Zermelo–Fraenkel set theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
the collection of all sets is not a set; this follows from the
axiom of foundation. One refers to collections that are not sets as
proper class
Proper may refer to:
Mathematics
* Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact
* Proper morphism, in algebraic geometry, an analogue of a proper map f ...
es. One cannot handle proper classes as one handles sets; in particular, one cannot write that those proper classes belong to a collection (either a set or a proper class). This is a problem because it means that the category of sets cannot be formalized straightforwardly in this setting. Categories like Set whose collection of objects forms a proper class are known as
large categories, to distinguish them from the small categories whose objects form a set.
One way to resolve the problem is to work in a system that gives formal status to proper classes, such as
NBG set theory. In this setting, categories formed from sets are said to be ''small'' and those (like Set) that are formed from proper classes are said to be ''large''.
Another solution is to assume the existence of
Grothendieck universes. Roughly speaking, a Grothendieck universe is a set which is itself a model of ZF(C) (for instance if a set belongs to a universe, its elements and its powerset will belong to the universe). The existence of Grothendieck universes (other than the empty set and the set
of all
hereditarily finite set
In mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to ...
s) is not implied by the usual ZF axioms; it is an additional, independent axiom, roughly equivalent to the existence of
strongly inaccessible cardinal
In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal is strongly inaccessible if it is uncountable, it is not a sum of f ...
s. Assuming this extra axiom, one can limit the objects of Set to the elements of a particular universe. (There is no "set of all sets" within the model, but one can still reason about the class ''U'' of all inner sets, i.e., elements of ''U''.)
In one variation of this scheme, the class of sets is the union of the entire tower of Grothendieck universes. (This is necessarily a
proper class
Proper may refer to:
Mathematics
* Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact
* Proper morphism, in algebraic geometry, an analogue of a proper map f ...
, but each Grothendieck universe is a set because it is an element of some larger Grothendieck universe.) However, one does not work directly with the "category of all sets". Instead, theorems are expressed in terms of the category Set
''U'' whose objects are the elements of a sufficiently large Grothendieck universe ''U'', and are then shown not to depend on the particular choice of ''U''. As a foundation for
category theory, this approach is well matched to a system like
Tarski–Grothendieck set theory in which one cannot reason directly about proper classes; its principal disadvantage is that a theorem can be true of all Set
''U'' but not of Set.
Various other solutions, and variations on the above, have been proposed.
The same issues arise with other concrete categories, such as the
category of groups
In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory.
Relation to other categories
T ...
or the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again con ...
.
See also
*
Category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again con ...
*
Set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concer ...
*
Small set (category theory)
Notes
References
*
*
*Lawvere, F.W
An elementary theory of the category of sets (long version) with commentary*
*
*
External links
A231344 Number of morphisms in full subcategories of Set spanned by at
OEIS
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to th ...
.
{{Foundations-footer
Foundations of mathematics
Sets
Basic concepts in set theory