Topos
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally, on a site). Topoi behave much like the category of sets and possess a notion of localization. The Grothendieck topoi find applications in algebraic geometry, and more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory. Grothendieck topos (topos in geometry) Since the introduction of sheaves into mathematics in the 1940s, a major theme has been to study a space by studying sheaves on a space. This idea was expounded by Alexander Grothendieck by introducing the notion of a "topos". The main utility of this notion is in the abundance of situations in mathematics where topological heuristics are very effective, but an honest topological space is lacking; it is sometimes possible to find a topos formalizing the heuristic. An important example of this progra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Sheaf (mathematics)
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well-behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every datum is the sum of its constituent data). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their precise definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
étale Topology
In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Alexander Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use. Definitions For any scheme ''X'', let Ét(''X'') be the category of all étale morphisms from a scheme to ''X''. This is the analog of the category of open subsets of ''X'' (that is, the category whose objects are varieties and whose morphisms are open immersions). Its objects can be informally thought of as étale open subsets of ''X''. The intersection of two objects corresponds to their fiber product over ''X''. Ét(''X'') is a large category, meaning that its objects do not form a set. An étale presheaf on ''X'' is a contravariant functor from Ét(''X'') to the category of sets. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Alexander Grothendieck
Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 – 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called Grothendieck's relative point of view, "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century. Grothendieck began his productive and public career as a mathematician in 1949. In 1958, he was appointed a research professor at the Institut des Hautes Études Scientifiques, Institut des hautes études scientifiques (IHÉS) and remained there until 1970, when, driven by personal and political convictions, he left following a dispute over military funding. He receive ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Site (mathematics)
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as ℓ-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinar ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Regular Category
In category theory, a regular category is a category with limit (category theory), finite limits and coequalizers of all pairs of morphisms called kernel pairs, satisfying certain ''exactness'' conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of ''images'', without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic. Definition A category ''C'' is called regular if it satisfies the following three properties: * ''C'' is finitely complete category, finitely complete. * If ''f'' : ''X'' → ''Y'' is a morphism in ''C'', and : is a pullback (category theory), pullback, then the coequalizer of ''p''0, ''p''1 exists. The pair (''p''0, ''p''1) is called the kernel pair of ''f''. Being a pullback, the kernel pair is unique up to a unique isomorphism. * If ''f'' : ''X'' →&nbs ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Grothendieck Site
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as ℓ-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinary ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. ''Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Jean Giraud (mathematician)
Jean Giraud (; 2 February 1936 – 27 or 28 March 2007) , Philippe Gillet, ''ENS Info'' 70, April 2007. was a French mathematician, a student of . His research focused on non-abelian and the theory of . In particular, he authored the book ''Cohomologie non-abélienne'' (Springer, 1971) and proved the theorem that bears his name, which gives a characterization of a [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Stack (mathematics)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf (mathematics), sheaf that takes values in category (mathematics), categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphism, isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis. In a more general set-up the restrictions are replaced with Pullback (category theory), pullbacks; fibred category, fibred categories then make a good framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial function replacing the binary operation; * '' Category'' in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called ''inverse'' by analogy with group theory. A groupoid where there is only one object is a usual group. In the presence of dependent typing, a category in general can be viewed as a typed monoid, and similarly, a groupoid can be viewed as simply a typed group. The morphisms take one from one object to another, and form a dependent family of types, thus morphisms might be typed , , say. Composition is then a total function: , so that . Special cases include: * '' Setoids'': sets that come with an equivalence relation, * '' G-sets'': sets equippe ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Coequalizer
In category theory, a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer. Definition A coequalizer is the colimit of a diagram consisting of two objects ''X'' and ''Y'' and two parallel morphisms . More explicitly, a coequalizer of the parallel morphisms ''f'' and ''g'' can be defined as an object ''Q'' together with a morphism such that . Moreover, the pair must be universal in the sense that given any other such pair (''Q''′, ''q''′) there exists a unique morphism such that . This information can be captured by the following commutative diagram: As with all universal constructions, a coequalizer, if it exists, is unique up to a unique isomorphism (this is why, by abuse of language, one sometimes speaks of "the" coequalizer of two parallel arrows). It can be shown that a coequalizing arrow ''q'' is an epimorphism in any ca ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |