Details
Each European Union member state will adopt its own enforcement and implementation policies using the directive as a guide. RoHS is often referred to as the "lead-free directive," but it restricts the use of the following ten substances: # Lead (Pb) #Examples of product components containing restricted substances
RoHS restricted substances have been used in a broad array of consumer electronics products. Examples of components that have contained lead include: * paints and pigments * PVC (vinyl) cables as a stabiliser (e.g., power cords, USB cables) * solders * printed circuit board finishes, leads, internal and external interconnects * glass in television and photographic products (e.g., CRT television screens and camera lenses) * metal parts * lamps and bulbs * batteries * integrated circuits or microchips Cadmium is found in many of the components above; examples include plastic pigmentation, nickel–cadmium (NiCd) batteries and CdS photocells (used in night lights). Mercury is used in lighting applications and automotive switches; examples include fluorescent lamps and mercury tilt switches (these are rarely used nowadays). Hexavalent chromium is used for metal finishes to prevent corrosion. Polybrominated biphenyls and diphenyl ethers/oxides are used primarily as flame retardants.Hazardous materials and the high-tech waste problem
RoHS and other efforts to reduce hazardous materials in electronics are motivated in part to address the global issue of consumer electronics waste. As newer technology arrives at an ever-increasing rate, consumers are discarding their obsolete products sooner than ever. This waste ends up in landfills and in countries like China to be "recycled."In the fashion-conscious mobile market, 98 million U.S. cell phones took their last call in 2005. All told, the EPA estimates that in the U.S. that year, between 1.5 and 1.9 million tons of computers, TVs, VCRs, monitors, cell phones, and other equipment were discarded. If all sources of electronic waste are tallied, it could total 50 million tons a year worldwide, according to the UN Environment Programme.American electronics sent offshore to countries like Ghana in West Africa under the guise of recycling may be doing more harm than good. Not only are adult and child workers in these jobs being poisoned by heavy metals, but these metals are returning to the U.S. "The U.S. right now is shipping large quantities of leaded materials to China, and China is the world's major manufacturing center," Dr. Jeffrey Weidenhamer says, a chemistry professor at Ashland University in Ohio. "It's not all that surprising things are coming full circle and now we're getting contaminated products back." *
Changing toxicity perceptions
In addition to the high-tech waste problem, RoHS reflects contemporary research over the past 50 years in biological toxicology that acknowledges the long-term effects of low-level chemical exposure on populations. New testing is capable of detecting much smaller concentrations of environmental toxicants. Researchers are associating these exposures with neurological, developmental, and reproductive changes. RoHS and other environmental laws are in contrast to historical and contemporary law that seek to address only acute toxicology, that is direct exposure to large amounts of toxic substances causing severe injury or death.Life-cycle impact assessment of lead-free solder
The United States Environmental Protection Agency (EPA) has published aLife-cycle impact assessment of BFR-free plastics
The ban on concentrations of brominated flame retardants (BFR) above 0.1% in plastics has affected plastics recycling. As more and more products include recycled plastics, it has become critical to know the BFR concentration in these plastics, either by tracing the origins of the recycled plastics to establish the BFR concentrations, or by measuring the BFR concentrations from samples. Plastics with high BFR concentrations are costly to handle or to discard, whereas plastics with levels below 0.1% have value as recyclable materials. There are a number of analytical techniques for the rapid measurement of BFR concentrations.2011/65/EU (RoHS 2)
The RoHS 2 directive (2011/65/EU) is an evolution of the original directive and became law on 21 July 2011 and took effect on 2 January 2013. It addresses the same substances as the original directive while improving regulatory conditions and legal clarity. It requires periodic re-evaluations that facilitate gradual broadening of its requirements to cover additional electronic and electrical equipment, cables and spare parts. The CE logo now indicates compliance and RoHS 2 declaration of conformity is now detailed (see below). In 2012, a final report from the European Commission revealed that some EU Member States considered all toys under the scope of the primary RoHS 1 Directive 2002/95/EC, irrespective of whether their primary or secondary functions were using electric currents or electromagnetic fields. From the implementation of RoHS 2 or RoHS Recast Directive 2011/65/EU on, all the concerned Member States will have to comply with the new regulation. The key difference in the recast is that it is now necessary to demonstrate conformity in a similar way to the LVD and EMC directives. Not being able to show compliance in sufficiently detailed files, and not ensuring it is implemented in production is now a criminal offence. Like the other CE marking directives it mandates production control and traceability to the technical files. It describes 2 methods of achieving presumption of conformity (Directive 2011/65/EU Article 16.2), either technical files should include test data for all materials or a standard accepted in the official journal for the directive, is used. Currently the only standard is IEC 63000:2016 (IEC 63000:2016 superseded EN 50581:2012), a risk based method to reduce the amount of test data required (Harmonised Standards list for RoHS2, OJEU C363/6). One of the consequences of the requirement to demonstrate conformity is the requirement to know the exemption use of each component, otherwise it is not possible to know compliance when the product is placed on the market, the only point in time the product must be 'compliant'. Many do not understand that 'compliance' varies depending on what exemptions are in force and it is quite possible to make a non-compliant product with 'compliant' components. Compliance must be calculated on the day of placing on the market. In reality this means knowing the exemption status of all components and using up stock of old status parts before the expire date of the exemptions (Directive 2011/65/EU Article 7.b referring to Decision 768/2008/EC Module A Internal production control). Not having a system to manage this could be seen as a lack of diligence and a criminal prosecution could occur (UK Instrument 2012 N. 3032 section 39 Penalties). RoHS 2 also has a more dynamic approach to exemptions, creating an automatic expiration if exemptions are not renewed by requests from industry. Additionally new substances can be added to the controlled list, with 4 new substances expected to be controlled by 2019. All these mean greater information control and update systems are required. Other differences include new responsibilities for importers and distributors and markings to improve traceability to the technical files. These are part of the NLF for directives and make the supply chain a more active part of the policing (Directive 2011/65/EU Articles 7, 9, 10). There has been a recent additional amendment 2017/2102 to 2011/652015/863 (RoHS 2 amendment)
The RoHS 2 directive (2011/65/EU) contains allowance to add new materials and 4 materials are highlighted for this attention in the original version, the amendment 2015/863 adds four additional substances to Annex II of 2011/65/EU (3/4 of the new restrictions are recommended for investigation in the original directive, ref Para 10 of preamble). This is another reason that simple component RoHS compliance statements are not acceptable as compliance requirements vary depending on the date the product is placed on the market (ref IEC 63000:2016). The additional four substances restriction and evidence requirements shall be applied for products placed on the market on or after 22 July 2019 except where exemptions permit as stated in Annex III., although at the time of writing no exemptions exist or have been applied for, for these materials. The four additional substances are # Bis(2-Ethylhexyl) phthalate (DEHP) # Benzyl butyl phthalate (BBP) # Dibutyl phthalate (DBP) # Diisobutyl phthalate (DIBP) The maximum permitted concentrations in non-exempt products are 0.1%. The new substances are also listed under the REACH Candidate list, and DEHP is not authorised for manufacturing (use as a substance) in the EU under Annex XIV of REACH.Scope exclusions
With the recast of the original RoHS (I) Directive (2002/95/EC), the scope of the directive was decoupled from the scope of the WEEE Directive and an open scope was introduced. The RoHS (II) Directive (2011/65/EU) was applicable to all electrical and electronic equipment. Scope limitations and exclusions were specifically introduced in Article 2(4) a) – j) of the recast Directive. All other EEE was in scope of the Directive, unless specific exemptions have been granted through Commission delegated acts (see next paragraph). The scope exclusions are listed below This Directive does not apply to:Restriction exemptions
There are over 80 exemptions, some of which are quite broad. Exemptions will automatically expire after 5 or 7 years unless renewed. According toLabeling and documentation
Products within scope of the RoHS 2 directive must display the CE mark, the manufacturers name and address and a serial or batch number. Parties needing to know more detailed compliance information can find this on the EU Declaration of Conformity for the product as created by the manufacturer (Brand owner) responsible for the design or the EU representative. The regulation also requires most actors in the supply chain for the product (importer and distributors) to keep and check this document, as well as ensuring a conformance process has been followed and the correct language translation for instructions are provided. The manufacturer must keep certain documentation to demonstrate conformity, known as a technical file or technical records. The directive requires the manufacturer to demonstrate conformity by the use of test data for all materials or by following a harmonised standard (IEC 63000:2016 is the only standard at the time of writing). Regulators may request this file or, more likely, specific data from it as it will likely be very large.History
RoHS did not require any specific product labelling, but many manufacturers have adopted their own compliance marks to reduce confusion. Visual indicators have included explicit "RoHS compliant" labels, green leaves, check marks, and "PB-Free" markings. Chinese RoHS labels, a lower case "e" within a circle with arrows, can also imply compliance. RoHS 2 attempts to address this issue by requiring the aforementioned CE mark whose use is policed by the Trading Standards enforcement agency. It states that the ''only'' permitted indication of RoHS compliance is the CE mark. The closely related WEEE ( Waste Electrical and Electronic Equipment Directive), which became law simultaneously with RoHS, depicts a waste-can logo with an "X" through it and often accompanies the CE mark.Future possible additions
New substance restrictions being considered for introduction in the next few years include phthalates, brominated flame retardants (BFRs), chlorinated flame retardants (CFRs), and PVC.Other regions
Asia / Pacific
;China Order No. 39: Final Measures for the ''Administration of the Control and Electronic Information Products'' (often referred to as '' China RoHS'') has the stated intent to establish similar restrictions, but in fact takes a very different approach. Unlike EU RoHS, where products in specified categories are included unless specifically excluded, there will be a list of included products, known as the ''catalogue'' – see Article 18 of the regulation – which will be a subset of the total scope of Electronic Information Products, or EIPs, to which the regulations apply. Initially, products that fall under the covered scope must provide markings and disclosure as to the presence of certain substances, while the substances themselves are not (yet) prohibited. There are some products that are EIPs, which are not in scope for EU RoHS, ''e.g.'' radar systems, semiconductor-manufacturing equipment, photomasks, etc. The list of EIPs is available in Chinese and English. The marking and disclosure aspects of the regulation were intended to take effect on 1 July 2006, but were postponed twice to 1 March 2007. There is no timeline for the catalogue yet. ;Japan: Japan does not have any direct legislation dealing with the RoHS substances, but its recycling laws have spurred Japanese manufacturers to move to a lead-free process in accordance with RoHS guidelines. A ministerial ordinance ''Japanese industrial standard for Marking of Specific Chemical Substances'' (J-MOSS), effective from 1 July 2006, directs that some electronic products exceeding a specified amount of the nominated toxic substances must carry a warning label. ;South Korea: South Korea promulgated the ''Act for Resource Recycling of Electrical and Electronic Equipment and Vehicles'' on 2 April 2007. This regulation has aspects of RoHS, WEEE, and ELV.United States
The Consumer Product Safety Act was enacted in 1972 followed by the Consumer Product Safety Improvement Act in 2008. California has passed the Electronic Waste Recycling Act of 2003 (EWRA). This law prohibits the sale of electronic devices after 1 January 2007, that are prohibited from being sold under the EU RoHS directive, but across a much narrower scope that includes LCDs, CRTs, and the like and only covers the four heavy metals restricted by RoHS. EWRA also has a restricted material disclosure requirement. Effective 1 January 2010, the California Lighting Efficiency and Toxics Reduction Act applies RoHS to general purpose lights, i.e. "lamps, bulbs, tubes, or other electric devices that provide functional illumination for indoor residential, indoor commercial, and outdoor use." Other US states and cities are debating whether to adopt similar laws, and there are several states that have mercury and PBDE bans already.Ireland
Worldwide standards and certification are available under the QC 080000 standard, governed by the National Standards Authority of Ireland, to ensure the control of hazardous substances in industrial applications.Sweden
In 2012 Sweden's Chemicals Agency (Kemi) and Electrical Safety Authority tested 63 consumer electronics products and found that 12 were out of compliance. Kemi claims that this is similar to testing results from prior years. "Eleven products contained prohibited levels of lead, and one of polybrominated diphenyl ether flame retardants. Details of seven companies have been passed to Swedish prosecutors. Kemi says that levels of non-compliance with RoHS are similar to previous years, and remain too high."Other standards
RoHS is not the only environmental standard of which electronic product developers should be aware. Manufacturers will find that it is cheaper to have only a single bill of materials for a product that is distributed worldwide, instead of customising the product to fit each country's specific environmental laws. Therefore, they develop their own standards, which allow only the strictest of all allowable substances. For example, IBM forces each of their suppliers to complete a Product Content Declaration form to document compliance to their environmental standard 'Baseline Environmental Requirements for Materials, Parts and Products for IBM Logo Hardware Products'. Thus, IBM bannedCriticism
Adverse effects on product quality and reliability, plus high cost of compliance (especially to small business) are cited as criticisms of the directive, as well as early research indicating that the life cycle benefits of lead-free solder versus traditional solder materials are mixed. Criticism earlier on came from an industry resistant to change and a misunderstanding of solders and soldering processes. Deliberate misinformation was espoused to resist what was perceived as a "non-tariff barrier created by European bureaucrats." Many believe the industry is stronger now through this experience and has a better understanding of the science and technologies involved. One criticism of RoHS is that the restriction of lead and cadmium does not address some of their most prolific applications, while being costly for the electronics industry to comply with . Specifically, the total lead used in electronics makes up only 2% of world lead consumption, while 90% of lead is used for batteries (covered by the battery directive, as mentioned above, which requires recycling and limits the use of mercury and cadmium, but does not restrict lead). Another criticism is that less than 4% of lead in landfills is due to electronic components or circuit boards, while approximately 36% is due to leaded glass inEffect on reliability
Potential reliability concerns were addressed in Annex item #7 of the RoHS directive, granting some specific exemptions from regulation until 2010. These issues were raised when the directive was first implemented in 2003 and reliability effects were less known. Another potential problem that some lead-free, high tin-based solders may face is the growth of tin whiskers. These thin strands of tin can grow and make contact with an adjacent trace, developing a short circuit. Lead in the solder suppresses the growth of tin whiskers. Historically tin whiskers have been associated with a handful of failures, including a nuclear power plant shutdown andEconomic effect
There are no ''Benefits
Health benefits
RoHS helps reduce damage to people and the environment in third-world countries where much of today's "high-tech waste" ends up. The use of lead-free solders and components reduces risks to electronics industry workers in prototype and manufacturing operations. Contact with solder paste no longer represents the same health hazard as it used to.Reliability concerns unfounded
Contrary to the predictions of widespread component failure and reduced reliability, RoHS's first anniversary (July 2007) passed with little fanfare. Most contemporary consumer electronics are RoHS compliant. As of 2013, millions of compliant products are in use worldwide. Many electronics companies keep "RoHS status" pages on their corporate websites. For example, the AMD website states:Although lead containing solder cannot be completely eliminated from all applications today, AMD engineers have developed effective technical solutions to reduce lead content in microprocessors and chipsets to ensure RoHS compliance while minimizing costs and maintaining product features. There is no change to fit, functional, electrical or performance specifications. Quality and reliability standards for RoHS compliant products are expected to be identical compared to current packages.RoHS printed circuit board finishing technologies are surpassing traditional formulations in fabrication thermal shock, solder paste printability, contact resistance, and aluminium wire bonding performance and nearing their performance in other attributes. The properties of lead-free solder, such as its high temperature resilience, has been used to prevent failures under harsh field conditions. These conditions include
Flow properties and assembly
One of the major differences between lead-containing and lead-free solder pastes is the "flow" of the solder in its liquid state. Lead-containing solder has a lower surface tension, and tends to move slightly to attach itself to exposed metal surfaces that touch any part of the liquid solder. Lead-free solder conversely tends to stay in place where it is in its liquid state, and attaches itself to exposed metal surfaces only where the liquid solder touches it. This lack of "flow" – while typically seen as a disadvantage because it can lead to lower quality electrical connections – can be used to place components more tightly than they used to be placed due to the properties of lead-containing solders. For example, Motorola reports that their new RoHS wireless device assembly techniques are "...enabling a smaller, thinner, lighter unit." Their Motorola Q phone would not have been possible without the new solder. The lead-free solder allows for tighter pad spacing.Some exempt products achieve compliance
Research into new alloys and technologies is allowing companies to release RoHS products that are currently exempt from compliance, ''e.g.'' computer servers. IBM has announced a RoHS solution for high lead solder joints once thought to remain a permanent exemption. The lead-free packaging technology "...offers economical advantages in relation to traditional bumping processes, such as solder waste reduction, use of bulk alloys, quicker time-to-market for products and a much lower chemical usage rate." Test and measurement vendors, such as National Instruments, have also started to produce RoHS-compliant products, despite devices in this category being exempt from the RoHS directive.Practical
RoHS compliance can be misleading because RoHS3 (EU) allows exemptions, ex. up to 85% lead content for high-temperature soldering alloys. Therefore good companies should clearly define their level of compliance in their product main datasheets (DS); ideally, they should provide a product content sheet (PCS) with full substance declaration by mass. Similarly, good developers (and users) should carefully validate the product info to make sure they get the exact material safety expected. Industry Examples: * RoHS3 compliant without exemptions * RoHS3 compliant with all applicable exemptions * RoHS3 compliant with exemption 7a * RoHS3 compliant, lead-free * RoHS3 compliant, green (where the term green is a company-specific standard, ex. lead-free and halogen-free) * RoHS3 compliant with exemptions, lead-free finish Ideal: RoHS3 compliant without exemptions Good Minimum Standard: RoHS3 compliant with exemption for lead-content on internal-only material (to help prevent lead-exposure on touch, lead-leakage in water)See also
*References
Further reading
*External links