
Ribozymes (ribonucleic acid enzymes) are
RNA
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
molecules that have the ability to
catalyze specific biochemical reactions, including
RNA splicing
RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcription (biology), transcript is transformed into a mature messenger RNA (Messenger RNA, mRNA). It works by removing all the introns (non-cod ...
in
gene expression
Gene expression is the process (including its Regulation of gene expression, regulation) by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, ...
, similar to the action of protein
enzymes
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as pro ...
. The 1982 discovery of ribozymes demonstrated that RNA can be both genetic material (like
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
) and a biological catalyst (like protein enzymes), and contributed to the
RNA world hypothesis, which suggests that RNA may have been important in the evolution of prebiotic
self-replicating
Self-replication is any behavior of a dynamical system that yields construction of an identical or similar copy of itself. Cell (biology), Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA repli ...
systems.
The most common activities of natural or
''in vitro'' evolved ribozymes are the cleavage (or
ligation) of RNA and DNA and peptide bond formation.
For example, the smallest ribozyme known (GUGGC-3') can aminoacylate a GCCU-3' sequence in the presence of PheAMP. Within the
ribosome
Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
, ribozymes function as part of the large subunit ribosomal RNA to link amino acids during
protein synthesis
Protein biosynthesis, or protein synthesis, is a core biological process, occurring inside cells, balancing the loss of cellular proteins (via degradation or export) through the production of new proteins. Proteins perform a number of critica ...
. They also participate in a variety of
RNA processing reactions, including
RNA splicing
RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcription (biology), transcript is transformed into a mature messenger RNA (Messenger RNA, mRNA). It works by removing all the introns (non-cod ...
,
viral replication
Viral replication is the formation of biological viruses during the infection process in the target host cells. Viruses must first get into the cell before viral replication can occur. Through the generation of abundant copies of its genome ...
, and
transfer RNA
Transfer ribonucleic acid (tRNA), formerly referred to as soluble ribonucleic acid (sRNA), is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes). In a cell, it provides the physical link between the gene ...
biosynthesis. Examples of ribozymes include the
hammerhead ribozyme
The hammerhead ribozyme is an RNA Sequence motif, motif that catalyzes reversible cleavage and Ligation (molecular biology), ligation reactions at a specific site within an RNA molecule. It is one of several catalytic RNAs (ribozymes) known to occ ...
, the
VS ribozyme,
leadzyme
Leadzyme is a small ribozyme (catalytic RNA), which catalyzes the cleavage of a specific phosphodiester bond. It was discovered using an In vitro, in-vitro evolution study where the researchers were selecting for RNAs that specifically cleaved the ...
, and the
hairpin ribozyme.
Researchers who are investigating the
origins of life through the RNA world hypothesis have been working on discovering a ribozyme with the capacity to self-replicate, which would require it to have the ability to catalytically synthesize polymers of RNA. This should be able to happen in prebiotically plausible conditions with high rates of copying accuracy to prevent degradation of information but also allowing for the occurrence of occasional errors during the copying process to allow for
Darwinian evolution to proceed.
Attempts have been made to develop ribozymes as therapeutic agents, as enzymes which target defined RNA sequences for cleavage, as
biosensor
A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector.
The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
s, and for applications in
functional genomics
Functional genomics is a field of molecular biology that attempts to describe gene (and protein) functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects (such as genome sequen ...
and gene discovery.
Discovery

Before the discovery of ribozymes,
enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s—which were defined
olelyas catalytic
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s—were the only known biological
catalysts
Catalysis () is the increase in reaction rate, rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst ...
. In 1967,
Carl Woese
Carl Richard Woese ( ; July 15, 1928 – December 30, 2012) was an American microbiologist and biophysicist. Woese is famous for defining the Archaea (a new domain of life) in 1977 through a pioneering phylogenetic taxonomy of 16S ribosomal ...
,
Francis Crick
Francis Harry Compton Crick (8 June 1916 – 28 July 2004) was an English molecular biologist, biophysicist, and neuroscientist. He, James Watson, Rosalind Franklin, and Maurice Wilkins played crucial roles in deciphering the Nucleic acid doub ...
, and
Leslie Orgel were the first to suggest that RNA could act as a catalyst. This idea was based upon the discovery that RNA can form complex
secondary structure
Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. The two most common Protein structure#Secondary structure, secondary structural elements are alpha helix, alpha helices and beta ...
s. These ribozymes were found in the
intron
An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of the cistron .e., gen ...
of an RNA transcript, which removed itself from the transcript, as well as in the RNA component of the RNase P complex, which is involved in the maturation of pre-
tRNA
Transfer ribonucleic acid (tRNA), formerly referred to as soluble ribonucleic acid (sRNA), is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes). In a cell, it provides the physical link between the gene ...
s. In 1989,
Thomas R. Cech and
Sidney Altman shared the
Nobel Prize
The Nobel Prizes ( ; ; ) are awards administered by the Nobel Foundation and granted in accordance with the principle of "for the greatest benefit to humankind". The prizes were first awarded in 1901, marking the fifth anniversary of Alfred N ...
in
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
for their "discovery of catalytic properties of RNA". The term ''ribozyme'' was first introduced by Kelly Kruger ''et al.'' in a paper published in ''
Cell'' in 1982.
It had been a firmly established belief in
biology
Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
that catalysis was reserved for proteins. However, the idea of RNA catalysis is motivated in part by the old question regarding the origin of life: Which comes first, enzymes that do the work of the cell or nucleic acids that carry the information required to produce the enzymes? The concept of "ribonucleic acids as catalysts" circumvents this problem. RNA, in essence, can be both the chicken and the egg.
In the 1980s, Thomas Cech, at the
University of Colorado Boulder
The University of Colorado Boulder (CU Boulder, CU, or Colorado) is a public research university in Boulder, Colorado, United States. Founded in 1876, five months before Colorado became a state, it is the flagship university of the University o ...
, was studying the excision of
introns
An intron is any Nucleic acid sequence, nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e., a region inside a gene."The notion of ...
in a ribosomal RNA gene in ''
Tetrahymena thermophila''. While trying to purify the enzyme responsible for the splicing reaction, he found that the intron could be spliced out in the absence of any added cell extract. As much as they tried, Cech and his colleagues could not identify any protein associated with the splicing reaction. After much work, Cech proposed that the intron sequence portion of the RNA could break and reform
phosphodiester bonds. At about the same time, Sidney Altman, a professor at
Yale University
Yale University is a Private university, private Ivy League research university in New Haven, Connecticut, United States. Founded in 1701, Yale is the List of Colonial Colleges, third-oldest institution of higher education in the United Stat ...
, was studying the way tRNA molecules are processed in the cell when he and his colleagues isolated an enzyme called
RNase-P, which is responsible for conversion of a precursor
tRNA
Transfer ribonucleic acid (tRNA), formerly referred to as soluble ribonucleic acid (sRNA), is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes). In a cell, it provides the physical link between the gene ...
into the active tRNA. Much to their surprise, they found that RNase-P contained RNA in addition to protein and that RNA was an essential component of the active enzyme. This was such a foreign idea that they had difficulty publishing their findings. The following year, Altman demonstrated that RNA can act as a catalyst by showing that the RNase-P RNA subunit could catalyze the cleavage of precursor tRNA into active tRNA in the absence of any protein component.
Since Cech's and Altman's discovery, other investigators have discovered other examples of self-cleaving RNA or catalytic RNA molecules. Many ribozymes have either a hairpin – or hammerhead – shaped active center and a unique secondary structure that allows them to cleave other RNA molecules at specific sequences. It is now possible to make ribozymes that will specifically cleave any RNA molecule. These RNA catalysts may have pharmaceutical applications. For example, a ribozyme has been designed to cleave the RNA of
HIV. If such a ribozyme were made by a cell, all incoming virus particles would have their RNA genome cleaved by the ribozyme, which would prevent infection.
Structure and mechanism
Despite having only four choices for each monomer unit (nucleotides), compared to 20 amino acid
side chains found in proteins, ribozymes have diverse structures and mechanisms. In many cases they are able to mimic the mechanism used by their protein counterparts. For example, in self cleaving ribozyme RNAs, an in-line SN2 reaction is carried out using the 2’ hydroxyl group as a nucleophile attacking the bridging phosphate and causing 5’ oxygen of the N+1 base to act as a leaving group. In comparison, RNase A, a protein that catalyzes the same reaction, uses a coordinating histidine and lysine to act as a base to attack the phosphate backbone.
Like many protein enzymes, metal binding is also critical to the function of many ribozymes. Often these interactions use both the phosphate backbone and the base of the nucleotide, causing drastic conformational changes. There are two mechanism classes for the cleavage of a phosphodiester backbone in the presence of metal. In the first mechanism, the internal 2’- OH group attacks the phosphorus center in a SN
2 mechanism. Metal ions promote this reaction by first coordinating the phosphate oxygen and later stabling the oxyanion. The second mechanism also follows a SN
2 displacement, but the nucleophile comes from water or exogenous hydroxyl groups rather than RNA itself. The smallest ribozyme is UUU, which can promote the cleavage between G and A of the GAAA tetranucleotide via the first mechanism in the presence of Mn
2+. The reason why this trinucleotide (rather than the complementary tetramer) catalyzes this reaction may be because the UUU-AAA pairing is the weakest and most flexible trinucleotide among the 64 conformations, which provides the binding site for Mn
2+.
Phosphoryl transfer can also be catalyzed without metal ions. For example, pancreatic ribonuclease A and
hepatitis delta virus (HDV) ribozymes can catalyze the cleavage of RNA backbone through acid-base catalysis without metal ions.
Hairpin ribozyme can also catalyze the self-cleavage of RNA without metal ions, but the mechanism for this is still unclear.
Ribozyme can also catalyze the formation of peptide bond between adjacent amino acids by lowering the activation entropy.
Activities
Although ribozymes are quite rare in most cells, their roles are sometimes essential to life. For example, the functional part of the
ribosome
Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order s ...
, the
biological machine that
translates RNA into proteins, is fundamentally a ribozyme, composed of
RNA tertiary structural motifs that are often coordinated to metal ions such as
Mg2+ as
cofactors. In a model system, there is no requirement for
divalent
In chemistry, the valence (US spelling) or valency (British spelling) of an atom is a measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Valence is generally understood to be the number of chemica ...
cations
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
in a five-nucleotide RNA catalyzing ''trans''-
phenylalanation of a four-nucleotide substrate with 3 base pairs complementary with the catalyst, where the catalyst/substrate were devised by truncation of the C3 ribozyme.
The best-studied ribozymes are probably those that cut themselves or other RNAs, as in the original discovery by Cech and Altman. However, ribozymes can be designed to catalyze a range of reactions, many of which may occur in life but have not been discovered in cells.
RNA may catalyze
folding of the pathological
protein conformation of a
prion
A prion () is a Proteinopathy, misfolded protein that induces misfolding in normal variants of the same protein, leading to cellular death. Prions are responsible for prion diseases, known as transmissible spongiform encephalopathy (TSEs), w ...
in a manner similar to that of a
chaperonin
HSP60, also known as chaperonins (Cpn), is a family of heat shock proteins originally sorted by their 60kDa molecular mass. They prevent misfolding of proteins during stressful situations such as high heat, by assisting protein folding. HSP60 b ...
.
Ribozymes and the origin of life
RNA can also act as a hereditary molecule, which encouraged
Walter Gilbert to propose that in the distant past, the
cell used RNA as both the genetic material and the structural and catalytic molecule rather than dividing these functions between
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
and
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
as they are today; this hypothesis is known as the "
RNA world hypothesis" of the
origin of life
Abiogenesis is the natural process by which life arises from abiotic component, non-living matter, such as simple organic compounds. The prevailing scientific hypothesis is that the transition from non-living to organism, living entities on ...
. Since
nucleotide
Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s and
RNA
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
(and thus ribozymes) can arise by inorganic chemicals, they are candidates for the first
enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s, and in fact, the first "replicators" (i.e., information-containing macro-molecules that replicate themselves). An example of a self-replicating ribozyme that ligates two substrates to generate an exact copy of itself was described in 2002.
The discovery of the catalytic activity of RNA solved the "chicken and egg" paradox of the origin of life, solving the problem of origin of peptide and nucleic acid
central dogma. According to this scenario, at the origin of life, all enzymatic activity and genetic information encoding was done by one molecule: RNA.
Ribozymes have been produced in the
laboratory
A laboratory (; ; colloquially lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed. Laboratories are found in a variety of settings such as schools ...
that are capable of catalyzing the synthesis of other RNA molecules from activated
monomer
A monomer ( ; ''mono-'', "one" + '' -mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or two- or three-dimensional network in a process called polymerization.
Classification
Chemis ...
s under very specific conditions, these molecules being known as
RNA polymerase
In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template.
Using the e ...
ribozymes.
The first RNA polymerase ribozyme was reported in 1996, and was capable of synthesizing RNA polymers up to 6 nucleotides in length.
Mutagenesis
Mutagenesis () is a process by which the genetic information of an organism is changed by the production of a mutation. It may occur spontaneously in nature, or as a result of exposure to mutagens. It can also be achieved experimentally using lab ...
and selection has been performed on an RNA ligase ribozyme from a large pool of random RNA sequences,
resulting in isolation of the improved "Round-18" polymerase ribozyme in 2001 which could catalyze RNA polymers now up to 14 nucleotides in length.
Upon application of further selection on the Round-18 ribozyme, the B6.61 ribozyme was generated and was able to add up to 20
nucleotides
Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
to a primer template in 24 hours, until it decomposes by cleavage of its phosphodiester bonds.
The rate at which ribozymes can polymerize an RNA sequence multiples substantially when it takes place within a
micelle
A micelle () or micella () ( or micellae, respectively) is an aggregate (or supramolecular assembly) of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension (also known as associated colloidal system). ...
.
The next ribozyme discovered was the "tC19Z" ribozyme, which can add up to 95
nucleotides
Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
with a fidelity of 0.0083 mutations/nucleotide.
Next, the "tC9Y" ribozyme was discovered by researchers and was further able to synthesize RNA strands up to 206 nucleotides long in the eutectic phase conditions at below-zero temperature,
conditions previously shown to promote ribozyme polymerase activity.
The RNA polymerase ribozyme (RPR) called tC9-4M was able to polymerize RNA chains longer than itself (i.e. longer than 177 nt) in magnesium ion concentrations close to physiological levels, whereas earlier RPRs required prebiotically implausible concentrations of up to 200 mM. The only factor required for it to achieve this was the presence of a very simple amino acid polymer called lysine decapeptide.
The most complex RPR synthesized by that point was called 24-3, which was newly capable of polymerizing the sequences of a substantial variety of nucleotide sequences and navigating through complex secondary structures of RNA substrates inaccessible to previous ribozymes. In fact, this experiment was the first to use a ribozyme to synthesize a tRNA molecule.
Starting with the 24-3 ribozyme, Tjhung et al.
applied another fourteen rounds of selection to obtain an RNA polymerase ribozyme by
''in vitro'' evolution termed '38-6' that has an unprecedented level of activity in copying complex RNA molecules. However, this ribozyme is unable to copy itself and its RNA products have a high
mutation rate
In genetics, the mutation rate is the frequency of new mutations in a single gene, nucleotide sequence, or organism over time. Mutation rates are not constant and are not limited to a single type of mutation; there are many different types of mu ...
. In a subsequent study, the researchers began with the 38-6 ribozyme and applied another 14 rounds of selection to generate the '52-2' ribozyme, which compared to 38-6, was again many times more active and could begin generating detectable and functional levels of the class I ligase, although it was still limited in its fidelity and functionality in comparison to copying of the same template by proteins such as the T7 RNA polymerase.
An RPR called t5(+1) adds triplet nucleotides at a time instead of just one nucleotide at a time. This heterodimeric RPR can navigate secondary structures inaccessible to 24-3, including hairpins. In the initial pool of RNA variants derived only from a previously synthesized RPR known as the Z RPR, two sequences separately emerged and evolved to be mutualistically dependent on each other. The Type 1 RNA evolved to be catalytically inactive, but complexing with the Type 5 RNA boosted its polymerization ability and enabled intermolecular interactions with the RNA template substrate obviating the need to tether the template directly to the RNA sequence of the RPR, which was a limitation of earlier studies. Not only did t5(+1) not need tethering to the template, but a primer was not needed either as t5(+1) had the ability to polymerize a template in both 3' → 5' and 5' 3 → 3' directions.
A highly evolved RNA polymerase ribozyme was able to function as a
reverse transcriptase
A reverse transcriptase (RT) is an enzyme used to convert RNA genome to DNA, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, by retrotransposon mobi ...
, that is, it can synthesize a DNA copy using an RNA template.
Such an activity is considered to have been crucial for the transition from RNA to DNA genomes during the early history of life on earth. Reverse transcription capability could have arisen as a secondary function of an early RNA-dependent RNA polymerase ribozyme.
An RNA sequence that folds into a ribozyme is capable of invading duplexed RNA, rearranging into an open holopolymerase complex, and then searching for a specific RNA promoter sequence, and upon recognition rearrange again into a processive form that polymerizes a complementary strand of the sequence. This ribozyme is capable of extending duplexed RNA by up to 107 nucleotides, and does so without needing to tether the sequence being polymerized.
A short 20-
nucleotide
Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
RNA variant ribozyme was identified that self-reproduces via template directed ligation of two 10 nucleotide
oligomers
In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
.
This minimal kind of RNA self-reproduction was discovered in a random pool of oligmers, and may represent an early step in the emergence of an RNA based genetic system from primordial components.
[
]
Ribozyme based origin of sexual reproduction
Sexual reproduction might have been present in the RNA world
The RNA world is a hypothetical stage in the evolutionary history of life on Earth in which self-replicating RNA molecules proliferated before the evolution of DNA and proteins. The term also refers to the hypothesis that posits the existence ...
that preceded DNA cellular life forms. Early cellular life forms having genomes with single copies of essential RNA ribozyme molecules would likely have been vulnerable to environmental damaging conditions that could block replication of an essential ribozyme thus causing cell death. Merger of two such damaged early cells (sexual interaction) would allow undamaged combinations of RNA segments to come together, thus facilitating formation of a functional genome and allowing survival of the cell and ability to reproduce.
Artificial ribozymes
Since the discovery of ribozymes that exist in living organisms, there has been interest in the study of new synthetic ribozymes made in the laboratory. For example, artificially produced self-cleaving RNAs with good enzymatic activity have been produced. Tang and Breaker isolated self-cleaving RNAs by ''in vitro'' selection of RNAs originating from random-sequence RNAs. Some of the synthetic ribozymes that were produced had novel structures, while some were similar to the naturally occurring hammerhead ribozyme.
In 2015, researchers at Northwestern University
Northwestern University (NU) is a Private university, private research university in Evanston, Illinois, United States. Established in 1851 to serve the historic Northwest Territory, it is the oldest University charter, chartered university in ...
and the University of Illinois Chicago engineered a tethered ribosome that works nearly as well as the authentic cellular component that produces all the proteins and enzymes within the cell. Called Ribosome-T, or Ribo-T, the artificial ribosome was created by Michael Jewett and Alexander Mankin. The techniques used to create artificial ribozymes involve directed evolution. This approach takes advantage of RNA's dual nature as both a catalyst and an informational polymer, making it easy for an investigator to produce vast populations of RNA catalysts using polymerase
In biochemistry, a polymerase is an enzyme (Enzyme Commission number, EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by ...
enzymes. The ribozymes are mutated by reverse transcribing them with reverse transcriptase
A reverse transcriptase (RT) is an enzyme used to convert RNA genome to DNA, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes, by retrotransposon mobi ...
into various cDNA
In genetics, complementary DNA (cDNA) is DNA that was reverse transcribed (via reverse transcriptase) from an RNA (e.g., messenger RNA or microRNA). cDNA exists in both single-stranded and double-stranded forms and in both natural and engin ...
and amplified with error-prone PCR. The selection parameters in these experiments often differ. One approach for selecting a ligase ribozyme involves using biotin
Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins. It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids. ...
tags, which are covalently linked to the substrate. If a molecule possesses the desired ligase
In biochemistry, a ligase is an enzyme that can catalyze the joining ( ligation) of two molecules by forming a new chemical bond. This is typically via hydrolysis of a small pendant chemical group on one of the molecules, typically resulting i ...
activity, a streptavidin
Streptavidin is a 52 Atomic mass unit, kDa protein (tetramer) purified from the bacterium ''Streptomyces avidinii''. Streptavidin Homotetramer, homo-tetramers have an extraordinarily high affinity for biotin (also known as vitamin B7 or vitamin ...
matrix can be used to recover the active molecules.
Lincoln and Joyce used ''in vitro'' evolution to develop ribozyme ligases capable of self-replication in about an hour, via the joining of pre-synthesized highly complementary oligonucleotides.
Although not true catalysts, the creation of artificial self-cleaving riboswitches, termed ''aptazymes'', has also been an active area of research. Riboswitches are regulatory RNA motifs that change their structure in response to a small molecule ligand to regulate translation. While there are many known natural riboswitches that bind a wide array of metabolites and other small organic molecules, only one ribozyme based on a riboswitch has been described: ''glmS''. Early work in characterizing self-cleaving riboswitches was focused on using theophylline
Theophylline, also known as 1,3-dimethylxanthine, is a drug that inhibits phosphodiesterase and blocks adenosine receptors. It is used to treat chronic obstructive pulmonary disease (COPD) and asthma. Its pharmacology is similar to other met ...
as the ligand. In these studies, an RNA hairpin is formed which blocks the ribosome binding site
A ribosome binding site, or ribosomal binding site (RBS), is a sequence of nucleotides upstream of the start codon of an mRNA transcript that is responsible for the recruitment of a ribosome during the initiation of translation. Mostly, RBS refers ...
, thus inhibiting translation. In the presence of the ligand
In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
, in these cases theophylline, the regulatory RNA region is cleaved off, allowing the ribosome to bind and translate the target gene. Much of this RNA engineering work was based on rational design and previously determined RNA structures rather than directed evolution as in the above examples. More recent work has broadened the ligands used in ribozyme riboswitches to include thymine pyrophosphate. Fluorescence-activated cell sorting has also been used to engineering aptazymes.
Applications
Ribozymes have been proposed and developed for the treatment of disease through gene therapy
Gene therapy is Health technology, medical technology that aims to produce a therapeutic effect through the manipulation of gene expression or through altering the biological properties of living cells.
The first attempt at modifying human DNA ...
. One major challenge of using RNA-based enzymes as a therapeutic is the short half-life of the catalytic RNA molecules in the body. To combat this, the 2’ position on the ribose is modified to improve RNA stability. One area of ribozyme gene therapy has been the inhibition of RNA-based viruses.
A type of synthetic ribozyme directed against HIV RNA called ''gene shears'' has been developed and has entered clinical testing for HIV infection.
Similarly, ribozymes have been designed to target the hepatitis C virus RNA, SARS coronavirus (SARS-CoV), Adenovirus
Adenoviruses (members of the family ''Adenoviridae'') are medium-sized (90–100 nm), nonenveloped (without an outer lipid bilayer) viruses with an icosahedral nucleocapsid containing a double-stranded DNA genome. Their name derives from t ...
and influenza A and B virus RNA. The ribozyme is able to cleave the conserved regions of the virus's genome, which has been shown to reduce the virus in mammalian cell culture. Despite these efforts by researchers, these projects have remained in the preclinical stage.
Known ribozymes
Well-validated naturally occurring ribozyme classes:
* GIR1 branching ribozyme
* ''glmS'' ribozyme
* Group I self-splicing intron
* Group II self-splicing intron – Spliceosome
A spliceosome is a large ribonucleoprotein (RNP) complex found primarily within the nucleus of eukaryotic cells. The spliceosome is assembled from small nuclear RNAs ( snRNA) and numerous proteins. Small nuclear RNA (snRNA) molecules bind to sp ...
is likely derived from Group II self-splicing ribozymes.
* Hairpin ribozyme
* Hammerhead ribozyme
The hammerhead ribozyme is an RNA Sequence motif, motif that catalyzes reversible cleavage and Ligation (molecular biology), ligation reactions at a specific site within an RNA molecule. It is one of several catalytic RNAs (ribozymes) known to occ ...
* HDV ribozyme
* rRNA
Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal ...
– Found in all living cells and links amino acids
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the Proteinogenic amino acid, 22 α-amino acids incorporated into p ...
to form protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s.
* RNase P
* Twister ribozyme
* Twister sister ribozyme
* VS ribozyme
* Pistol ribozyme
* Hatchet ribozyme
* Viroids
Viroids are small single-stranded, circular RNAs that are infectious pathogens. Unlike viruses, they have no protein coating. All known viroids are inhabitants of angiosperms (flowering plants), and most cause diseases, whose respective econo ...
See also
*Deoxyribozyme
Deoxyribozymes, also called DNA enzymes, DNAzymes, or catalytic DNA, are DNA oligonucleotides that are capable of performing a specific chemical reaction, often but not always catalytic. This is similar to the action of other biological enzymes, s ...
* Spiegelman Monster
*Catalysis
Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
*Enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
* RNA world hypothesis
*Peptide nucleic acid
Peptide nucleic acid (PNA) is an artificially synthesized polymer similar to DNA or RNA.
Synthetic peptide nucleic acid oligomers have been used in recent years in molecular biology procedures, diagnostic assays, and antisense therapies. Due to ...
* Nucleic acid analogues
* PAH world hypothesis
* SELEX
* OLE RNA
Notes and references
Further reading
*
*
*
*
*
*
*
*
*
External links
Tom Cech's Short Talk: "Discovering Ribozymes"
{{Portal bar, Biology
RNA
Catalysts
Biomolecules
Metabolism
Chemical kinetics
RNA splicing