Reichert's Membrane
   HOME

TheInfoList



OR:

Reichert's membrane is an
extraembryonic membrane The extraembryonic membranes are four membranes which assist in the development of an animal's embryo. Such membranes occur in a range of animals from humans to insects. They originate from the zygote, but are not considered part of the embryo. The ...
that forms during early mammalian
embryonic development In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm, sperm cell (spermat ...
. It forms as a thickened
basement membrane The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tis ...
to cover the embryo immediately following implantation to give protection to the embryo from the uterine pressures exerted. Reichert's membrane is also important for the maternofetal exchange of nutrients. The membrane collapses once the
placenta The placenta (: placentas or placentae) is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas, and waste exchange between ...
has fully developed.


Structure

Reichert's membrane is a multilayered, non-vascular, specialised thickened
basement membrane The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tis ...
that forms on the inner surface of the
trophoblast The trophoblast (from Greek language, Greek : to feed; and : germinator) is the outer layer of cells of the blastocyst. Trophoblasts are present four days after Human fertilization, fertilization in humans. They provide nutrients to the embryo an ...
around the time of implantation, and during the formation of the
placenta The placenta (: placentas or placentae) is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas, and waste exchange between ...
. It is composed of an
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
that includes
laminin Laminins are a family of glycoproteins of the extracellular matrix of all animals. They are major constituents of the basement membrane, namely the basal lamina (the protein network foundation for most cells and organs). Laminins are vital to bi ...
,
type IV collagen Collagen IV (ColIV or Col4) is a type of collagen found primarily in the basal lamina. The collagen IV C4 domain at the C-terminus is not removed in post-translational processing, and the fibers link head-to-head, rather than in parallel. Also, ...
, and
nidogen Nidogens, formerly known as entactins, are a family of sulfated monomeric glycoproteins located in the basal lamina of parahoxozoans. Two nidogens have been identified in humans: nidogen-1 (NID1) and nidogen-2 (NID2). Remarkably, vertebrates are ...
, and is secreted by embryonic cells in the distal parietal
endoderm Endoderm is the innermost of the three primary germ layers in the very early embryo. The other two layers are the ectoderm (outside layer) and mesoderm (middle layer). Cells migrating inward along the archenteron form the inner layer of the gastr ...
. The synthesis of
laminin 111 Laminin–111 (also "laminin–1") is a protein of the type known as laminin isoforms. It was among the first of the laminin isoforms to be discovered.Aumailley, M., Bruckner-Tuderman, L., Carter, W. G., Deutzmann, R., Edgar, D., Ekblom, P., & Yu ...
in the embryo contributes to the formation of Reichert's membrane.


Function

Reichert's membrane functions as a buffer space between the
embryo An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sp ...
and the
decidua The decidua is the modified mucosal lining of the uterus (that is, modified endometrium) that forms every month, in preparation for pregnancy. It is shed off each month when there is no fertilized egg to support. The decidua is under the influe ...
. This space provides protection to the embryo from varying uterine pressures exerted by
smooth muscle Smooth muscle is one of the three major types of vertebrate muscle tissue, the others being skeletal and cardiac muscle. It can also be found in invertebrates and is controlled by the autonomic nervous system. It is non- striated, so-called bec ...
contractions of the
myometrium The myometrium is the middle layer of the uterine wall, consisting mainly of uterine smooth muscle cells (also called uterine myocytes) but also of supporting stromal and vascular tissue. Its main function is to induce uterine contractions. Stru ...
. During post
gastrulation Gastrulation is the stage in the early embryonic development of most animals, during which the blastula (a single-layered hollow sphere of cells), or in mammals, the blastocyst, is reorganized into a two-layered or three-layered embryo known as ...
Reichert's membrane is necessary for the maternofetal exchange of nutrients. Reichert's membrane encloses the embryo until the
amnion The amnion (: amnions or amnia) is a membrane that closely covers human and various other embryos when they first form. It fills with amniotic fluid, which causes the amnion to expand and become the amniotic sac that provides a protective envir ...
develops, and when the placenta is fully developed the membrane collapses. A major difference in the early formation of the mouse embryo, and that of the human embryo is that in the mouse following implantation the epiblast takes on an egg or cylindrical shape; in the human the epiblast forms into a horizontal, disc-shape the bilaminar disc. A study that looked at this morphological difference between a human embryo initial development and a mouse embryo, concluded that it is likely that Reichert's membrane is the key regulator of the epiblast's horizontal growth.


References

{{Extraembryonic and fetal membranes Embryology