A regenerative heat exchanger, or more commonly a regenerator, is a type of
heat exchanger
A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
where heat from the hot fluid is intermittently stored in a thermal storage medium before it is transferred to the cold fluid. To accomplish this the hot fluid is brought into contact with the heat storage medium, then the fluid is displaced with the cold fluid, which absorbs the heat.
In regenerative heat exchangers, the fluid on either side of the heat exchanger can be the same fluid. The fluid may go through an external processing step, and then it is flowed back through the heat exchanger in the opposite direction for further processing. Usually the application will use this process cyclically or repetitively.
Regenerative heating was one of the most important technologies developed during the
Industrial Revolution
The Industrial Revolution, sometimes divided into the First Industrial Revolution and Second Industrial Revolution, was a transitional period of the global economy toward more widespread, efficient and stable manufacturing processes, succee ...
when it was used in the
hot blast
Hot blast is the preheated air blown into a blast furnace or other metallurgical process. This technology, which considerably reduces the fuel consumed, was one of the most important technologies developed during the Industrial Revolution. Hot b ...
process on
blast furnace
A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being supplied above atmospheric pressure.
In a ...
s. It was later used in
glass melting furnaces and steel making, to increase the efficiency of
open hearth furnace
An open-hearth furnace or open hearth furnace is any of several kinds of industrial Industrial furnace, furnace in which excess carbon and other impurities are burnt out of pig iron to Steelmaking, produce steel. Because steel is difficult to ma ...
s, and in high pressure boilers and chemical and other applications, where it continues to be important today.
History
The first regenerator was invented by Rev.
Robert Stirling
Robert Stirling (25 October 1790 – 6 June 1878) was a Scottish clergyman and engineer. He invented the Stirling engine and was inducted into the Scottish Engineering Hall of Fame in 2014.
Early life
Robert Stirling was born at Cloag Farm ...
in 1816, and is also found as a component of some examples of his
Stirling engine
A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (ph ...
. The simplest Stirling engines, including most models, use the walls of the cylinder and displacer as a rudimentary regenerator, which is simpler and cheaper to construct but far less efficient.
Later applications included the
blast furnace
A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being supplied above atmospheric pressure.
In a ...
process known as
hot blast
Hot blast is the preheated air blown into a blast furnace or other metallurgical process. This technology, which considerably reduces the fuel consumed, was one of the most important technologies developed during the Industrial Revolution. Hot b ...
and the
open hearth furnace
An open-hearth furnace or open hearth furnace is any of several kinds of industrial Industrial furnace, furnace in which excess carbon and other impurities are burnt out of pig iron to Steelmaking, produce steel. Because steel is difficult to ma ...
also called the Siemens regenerative furnace (which was used for making glass), where the hot exhaust gases from combustion are passed through firebrick regenerative chambers, which are thus heated. The flow is then reversed, so that the heated bricks preheat the fuel.
Edward Alfred Cowper applied the regeneration principle to blast furnaces, in the form of the "Cowper stove", patented in 1857.
This is almost invariably used with blast furnaces to this day.
Types of regenerators
Regenerators exchange heat from one process fluid to an intermediate solid heat storage medium, then that medium exchanges heat with a second process fluid flow. The two flows are either separated in time, alternately circulating through the storage medium, or are separated in space and the heat storage medium is moved between the two flows.
In rotary regenerators, or
thermal wheel
A thermal wheel, also known as a rotary heat exchanger, or rotary air-to-air enthalpy wheel, energy recovery wheel, or heat recovery wheel, is a type of energy recovery heat exchanger positioned within the supply and exhaust air streams of air- ...
s, the heat storage "matrix" in the form of a wheel or drum, that rotates continuously through two counter-flowing streams of fluid. In this way, the two streams are mostly separated. Only one stream flows through each section of the matrix at a time; however, over the course of a rotation, both streams eventually flow through all sections of the matrix in succession. The heat storage medium can be a relatively fine-grained set of metal plates or wire mesh, made of some resistant alloy or coated to resist chemical attack by the process fluids, or made of ceramics in high temperature applications. A large amount of heat transfer area can be provided in each unit volume of the rotary regenerator, compared to a shell-and-tube heat exchanger - up to 1000 square feet of surface can be contained in each cubic foot of regenerator matrix, compared to about 30 square feet in each cubic foot of a shell-and-tube exchanger.
[John J. McKetta Jr (ed.), ''Heat Transfer Design Methods'', CRC Press, 1991, , pages 101-103]
Each portion of the matrix will be nearly
isothermal
An isothermal process is a type of thermodynamic process in which the temperature ''T'' of a system remains constant: Δ''T'' = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the sys ...
, since the rotation is perpendicular to both the temperature gradient and flow direction, and not through them. The two fluid streams flow counter-current. The fluid temperatures vary across the flow area; however the local stream temperatures are not a function of time. The seals between the two streams are not perfect, so some cross contamination will occur. The allowable pressure level of a rotary regenerator is relatively low, compared to heat exchangers.
In a fixed matrix regenerator, a single fluid stream has cyclical, reversible flow; it is said to flow "counter-current". This regenerator may be part of a
valve
A valve is a device or natural object that regulates, directs or controls the flow of a fluid (gases, liquids, fluidized solids, or Slurry, slurries) by opening, closing, or partially obstructing various passageways. Valves are technically Pip ...
less system, such as a
Stirling engine
A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (ph ...
. In another configuration, the fluid is ducted through valves to different matrices in alternate operating periods resulting in outlet temperatures that vary with time. For example, a blast furnace may have several "stoves" or "checkers" full of refractory fire brick. The hot gas from the furnace is ducted through the brickwork for some interval, say one hour, until the brick reaches a high temperature. Valves then operate and switch the cold intake air through the brick, recovering the heat for use in the furnace. Practical installations will have multiple stoves and arrangements of valves to gradually transfer flow between a "hot" stove and an adjacent "cold" stove, so that the variations in the outlet air temperature are reduced.
[Ramesh K. Shah, Dusan P. Sekulic ''Fundamentals of Heat Exchanger Design'', John Wiley & Sons, 2003 , page 55]
Another type of regenerator is called a micro scale regenerative heat exchanger. It has a multilayer grating structure in which each layer is offset from the adjacent layer by half a cell which has an opening along both axes perpendicular to the flow axis. Each layer is a composite structure of two sublayers, one of a high thermal conductivity material and another of a low thermal conductivity material. When a hot fluid flows through the cell, heat from the fluid is transferred to the cell walls, and stored there. When the fluid flow reverses direction, heat is transferred from the cell walls back to the fluid.
A third type of regenerator is called a "''Rothemühle''" regenerator. This type has a fixed matrix in a disk shape, and streams of fluid are ducted through rotating hoods. The ''Rothemühle'' regenerator is used as an air preheater in power generating plants. The thermal design of this regenerator is the same as of other types of regenerators.
Biology
The nose and throat work as regenerative heat exchangers during breathing. The cooler air coming in is warmed, so that it reaches the lungs as warm air. On the way back out, this warmed air deposits much of its heat back onto the sides of the nasal passages, so that these passages are then ready to warm the next batch of air coming in. Some animals, including humans, have curled sheets of bone inside the nose called
nasal turbinates to increase the surface area for heat exchange.
Cryogenics
Regenerative heat exchangers are made up of materials with high volumetric
heat capacity
Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K).
Heat capacity is a ...
and low
thermal conductivity
The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1.
Heat transfer occurs at a lower rate in materials of low ...
in the longitudinal (flow) direction. At
cryogenic
In physics, cryogenics is the production and behaviour of materials at very low temperatures.
The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a univers ...
(very low) temperatures around 20
K, the specific heat of metals is low, and so a regenerator must be larger for a given heat load.
Advantages of regenerators
The advantages of a regenerator over a recuperating (counter-flowing) heat exchanger is that it has a much higher surface area for a given volume, which provides a reduced exchanger volume for a given energy density, effectiveness and pressure drop. This makes a regenerator more economical in terms of materials and manufacturing, compared to an equivalent recuperator.
The design of inlet and outlet headers used to distribute hot and cold fluids in the matrix is much simpler in counter flow regenerators than recuperators. The reason behind this is that both streams flow in different sections for a rotary regenerator and one fluid enters and leaves one matrix at a time in a fixed-matrix regenerator. Furthermore, flow sectors for hot and cold fluids in rotary regenerators can be designed to optimize pressure drop in the fluids. The matrix surfaces of regenerators also have self-cleaning characteristics, reducing fluid-side fouling and corrosion. Finally properties such as small surface density and counter-flow arrangement of regenerators make it ideal for gas-gas heat exchange applications requiring effectiveness exceeding 85%. The heat transfer coefficient is much lower for gases than for liquids, thus the enormous surface area in a regenerator greatly increases heat transfer.
Disadvantages of regenerators
The major disadvantage of rotary and fixed-matrix regenerators is that there is always some mixing of the fluid streams, and they can not be completely separated. There is an unavoidable carryover of a small fraction of one fluid stream into the other. In the rotary regenerator, the carryover fluid is trapped inside the radial seal and in the matrix, and in a fixed-matrix regenerator, the carryover fluid is the fluid that remains in the void volume of the matrix. This small fraction will mix with the other stream in the following half-cycle. Therefore, rotary and fixed-matrix regenerators are only used when it is acceptable for the two fluid streams to be mixed. Mixed flow is common for gas-to-gas heat and/or energy transfer applications, and less common in liquid or phase-changing fluids since fluid contamination is often prohibited with liquid flows.
The constant alternation of heating and cooling that takes place in regenerative heat exchangers puts a lot of stress on the components of the heat exchanger, which can cause cracking or breakdown of materials.
See also
*
Countercurrent exchange
Countercurrent exchange is a mechanism between two flowing bodies flowing in opposite directions to each other, in which there is a transfer of some property, usually heat or some chemical. The flowing bodies can be liquids, gases, or even solid ...
*
Economizer
Economizers (US and Oxford spelling), or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, p ...
*
Heat exchanger
A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
*
Hot blast
Hot blast is the preheated air blown into a blast furnace or other metallurgical process. This technology, which considerably reduces the fuel consumed, was one of the most important technologies developed during the Industrial Revolution. Hot b ...
*
Recuperator
A recuperator (electro- end carbogidro-) - is a special purpose countercurrent exchange, counter-flow energy recovery heat exchanger positioned within the supply and exhaust air streams of an air handling system, or in the exhaust gases of an in ...
*
desalination
Desalination is a process that removes mineral components from saline water. More generally, desalination is the removal of salts and minerals from a substance. One example is Soil salinity control, soil desalination. This is important for agric ...
– some thermal desalination plants use regenerative heat exchangers
*
Thermal wheel
A thermal wheel, also known as a rotary heat exchanger, or rotary air-to-air enthalpy wheel, energy recovery wheel, or heat recovery wheel, is a type of energy recovery heat exchanger positioned within the supply and exhaust air streams of air- ...
, a regenerative heat exchanger where the heated medium is rotated continuously between the two gasflows.
References
Bibliography
*
* {{cite magazine , magazine=
NASA Tech Briefs
The National Aeronautics and Space Administration is required by its charter to report to industry any new, commercially significant technologies developed in the course of their R&D. Since the early 1960s, this has been accomplished primarily ...
, issn=1049-3522 , title=Microscale regenerative heat exchanger , url=http://www.techbriefs.com/content/view/61/34/ , author=
John H. Glenn Research Center , publication-date=August 2006 , volume=30 , number=8 , oclc=102235244
* https://books.google.com/books?id=beSXNAZblWQC&pg=PA8&dq=fluid+heat+exchangers&sig=v3NF11puSFyQiUfPV2VbWjOEHik#PPA51,M1
Heat exchangers
Energy recovery