HOME

TheInfoList



OR:

In classical
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a radius (: radii or radiuses) of a
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
or
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
is any of the
line segment In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special c ...
s from its center to its
perimeter A perimeter is the length of a closed boundary that encompasses, surrounds, or outlines either a two-dimensional shape or a one-dimensional line. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimet ...
, and in more modern usage, it is also their length. The radius of a
regular polygon In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex ...
is the line segment or distance from its center to any of its vertices. The name comes from the
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
''radius'', meaning ray but also the spoke of a chariot wheel.Definition of Radius
at dictionary.reference.com. Accessed on 2009-08-08.
The typical abbreviation and
mathematical symbol A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula ...
for radius is ''R'' or ''r''. By extension, the
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
''D'' is defined as twice the radius:Definition of radius
at mathwords.com. Accessed on 2009-08-08.
:d \doteq 2r \quad \Rightarrow \quad r = \frac d 2. If an object does not have a center, the term may refer to its circumradius, the radius of its
circumscribed circle In geometry, a circumscribed circle for a set of points is a circle passing through each of them. Such a circle is said to ''circumscribe'' the points or a polygon formed from them; such a polygon is said to be ''inscribed'' in the circle. * Circu ...
or
circumscribed sphere In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron's Vertex (geometry), vertices. The word circumsphere is sometimes used to mean the same thing, by analogy with the te ...
. In either case, the radius may be more than half the diameter, which is usually defined as the maximum distance between any two points of the figure. The
inradius In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. ...
of a geometric figure is usually the radius of the largest circle or sphere contained in it. The inner radius of a ring, tube or other hollow object is the radius of its cavity. For
regular polygon In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex ...
s, the radius is the same as its circumradius. The inradius of a regular polygon is also called the
apothem The apothem (sometimes abbreviated as apo) of a regular polygon is a line segment from the center to the midpoint of one of its sides. Equivalently, it is the line drawn from the center of the polygon that is perpendicular to one of its sides. T ...
. In
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
, the radius of a graph is the minimum over all vertices ''u'' of the maximum distance from ''u'' to any other vertex of the graph.Jonathan L. Gross, Jay Yellen (2006), ''Graph theory and its applications''. 2nd edition, 779 pages; CRC Press. , 9781584885054
Online version
accessed on 2009-08-08.
The radius of the circle with
perimeter A perimeter is the length of a closed boundary that encompasses, surrounds, or outlines either a two-dimensional shape or a one-dimensional line. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimet ...
(
circumference In geometry, the circumference () is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. More generally, the perimeter is the curve length arou ...
) ''C'' is :r = \frac C .


Formula

For many geometric figures, the radius has a well-defined relationship with other measures of the figure.


Circles

The radius of a circle with
area Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
is : r = \sqrt. The radius of the circle that passes through the three non-
collinear In geometry, collinearity of a set of Point (geometry), points is the property of their lying on a single Line (geometry), line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, t ...
points , , and is given by : r=\frac, where is the angle . This formula uses the
law of sines In trigonometry, the law of sines (sometimes called the sine formula or sine rule) is a mathematical equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, \frac \,=\, \frac \,=\, \frac \,=\ ...
. If the three points are given by their coordinates , , and , the radius can be expressed as : r = \frac .


Regular polygons

The radius of a regular polygon with sides of length is given by , where R_n = 1\left/\left(2 \sin \frac\pi n \right)\right. . Values of for small values of are given in the table. If then these values are also the radii of the corresponding regular polygons.


Hypercubes

The radius of a ''d''-dimensional
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
with side ''s'' is : r = \frac\sqrt.


Use in coordinate systems


Polar coordinates

The polar coordinate system is a two-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
al
coordinate system In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
in which each point on a plane is determined by a
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two co ...
from a fixed point and an
angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
from a fixed direction. The fixed point (analogous to the origin of a Cartesian system) is called the ''pole'', and the ray from the pole in the fixed direction is the ''polar axis''. The distance from the pole is called the ''radial coordinate'' or ''radius'', and the angle is the ''angular coordinate'', ''polar angle'', or ''
azimuth An azimuth (; from ) is the horizontal angle from a cardinal direction, most commonly north, in a local or observer-centric spherical coordinate system. Mathematically, the relative position vector from an observer ( origin) to a point ...
''.


Cylindrical coordinates

In the cylindrical coordinate system, there is a chosen reference axis and a chosen reference plane perpendicular to that axis. The ''origin'' of the system is the point where all three coordinates can be given as zero. This is the intersection between the reference plane and the axis. The axis is variously called the ''cylindrical'' or ''longitudinal'' axis, to differentiate it from the ''polar axis'', which is the ray that lies in the reference plane, starting at the origin and pointing in the reference direction. The distance from the axis may be called the ''radial distance'' or ''radius'', while the angular coordinate is sometimes referred to as the ''angular position'' or as the ''azimuth''. The radius and the azimuth are together called the ''polar coordinates'', as they correspond to a two-dimensional polar coordinate system in the plane through the point, parallel to the reference plane. The third coordinate may be called the ''height'' or ''altitude'' (if the reference plane is considered horizontal), ''longitudinal position'', or ''axial position''. " ../nowiki>where ''r'', ''θ'', and ''z'' are cylindrical coordinates ../nowiki> as a function of axial position ../nowiki>"


Spherical coordinates

In a spherical coordinate system, the radius describes the distance of a point from a fixed origin. Its position if further defined by the polar angle measured between the radial direction and a fixed zenith direction, and the azimuth angle, the angle between the orthogonal projection of the radial direction on a reference plane that passes through the origin and is orthogonal to the zenith, and a fixed reference direction in that plane.


See also

* Bend radius *
Filling radius In Riemannian geometry, the filling radius of a Riemannian manifold ''X'' is a metric invariant of ''X''. It was originally introduced in 1983 by Mikhail Gromov (mathematician), Mikhail Gromov, who used it to prove his Gromov's systolic inequality ...
in Riemannian geometry *
Mean radius In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter) (D) is twice the equiva ...
*
Radius of convergence In mathematics, the radius of convergence of a power series is the radius of the largest Disk (mathematics), disk at the Power series, center of the series in which the series Convergent series, converges. It is either a non-negative real number o ...
* Radius of convexity *
Radius of curvature In differential geometry, the radius of curvature, , is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius ...
* Radius of gyration *
Semidiameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for ...


Notes


References

{{Authority control *