Poly ADP Ribose Polymerase
   HOME

TheInfoList



OR:

Poly (ADP-ribose) polymerase (PARP) is a family of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s involved in a number of cellular processes such as
DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
, genomic stability, and
programmed cell death Programmed cell death (PCD) sometimes referred to as cell, or cellular suicide is the death of a cell (biology), cell as a result of events inside of a cell, such as apoptosis or autophagy. PCD is carried out in a biological process, which usual ...
.


Members of PARP family

The PARP family comprises 17 members (10 putative). They vary greatly in structure and function within the cell. * '' PARP1'', '' PARP2'', VPARP ('' PARP4''), Tankyrase-1 and -2 (PARP-5a or '' TNKS'', and PARP-5b or '' TNKS2'') have a confirmed PARP activity. * Others include '' PARP3'', , '' TIPARP'' (or "PARP7"), '' PARP8'', , '' PARP10'', , '' PARP12'', , , and '' PARP16''.


Structure

PARP is composed of four domains of interest: a
DNA-binding domain A DNA-binding domain (DBD) is an independently folded protein domain that contains at least one structural motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence (a recognition sequence) or have a gener ...
, a caspase-cleaved domain (see below), an auto-modification domain, and a catalytic domain. The DNA-binding domain is composed of two
zinc finger A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) which stabilizes the fold. The term ''zinc finger'' was originally coined to describe the finger-like appearance of a ...
motifs. In the presence of damaged DNA (base pair-excised), the DNA-binding domain will bind the DNA and induce a conformational shift. It has been shown that this binding occurs independent of the other domains. This is integral in a programmed cell death model based on caspase cleavage inhibition of PARP. The auto-modification domain is responsible for releasing the protein from the DNA after catalysis. Also, it plays an integral role in cleavage-induced inactivation.


Functions

The main role of PARP (found in the
cell nucleus The cell nucleus (; : nuclei) is a membrane-bound organelle found in eukaryote, eukaryotic cell (biology), cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have #Anucleated_cells, ...
) is to detect and initiate an immediate cellular response to metabolic, chemical, or radiation-induced single-strand DNA breaks (SSB) by signaling the enzymatic machinery involved in the SSB repair. Once PARP detects a SSB, it binds to the
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
, undergoes a structural change, and begins the synthesis of a polymeric adenosine diphosphate ribose (poly (ADP-ribose) or PAR) chain, which acts as a signal for the other DNA-repairing enzymes. Target enzymes include DNA ligase III (LigIII), DNA polymerase beta (polβ), and scaffolding proteins such as X-ray cross-complementing gene 1 (XRCC1). After repairing, the PAR chains are degraded via Poly(ADP-ribose) glycohydrolase (PARG). NAD+ is required as substrate for generating ADP-ribose monomers. It has been thought that overactivation of PARP may deplete the stores of cellular NAD+ and induce a progressive ATP depletion and necrotic cell death, since
glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
oxidation is inhibited. But more recently it was suggested that it is PARP-catalysed inhibition of
hexokinase A hexokinase is an enzyme that irreversibly phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important p ...
activity that leads to defects in glycolysis
Andrabi, PNAS 2014
. Basal PARP activity also regulates basal bioenergetics. Note below that PARP is inactivated by caspase-3 cleavage during programmed
cell death Cell death is the event of a biological cell ceasing to carry out its functions. This may be the result of the natural process of old cells dying and being replaced by new ones, as in programmed cell death, or may result from factors such as di ...
. PARP enzymes are essential in a number of cellular functions, including expression of inflammatory genes: PARP1 is required for the induction of
ICAM-1 ICAM-1 (Intercellular adhesion molecule, Intercellular Adhesion Molecule 1) also known as CD54 (Cluster of Differentiation 54) is a protein that in humans is encoded by the ''ICAM1'' gene. This gene encodes a cell surface glycoprotein which is ty ...
gene expression by cardiac myocytes and smooth muscle cells, in response to TNF.


Activity

The catalytic domain is responsible for Poly (ADP-ribose)
polymerization In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many fo ...
. This domain has a highly conserved motif that is common to all members of the PARP family. PAR polymer can reach lengths of up to 200 nucleotides before inducing apoptotic processes. The formation of PAR polymer is similar to the formation of DNA polymer from nucleoside triphosphates. Normal DNA synthesis requires that a
pyrophosphate In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate () and tetrasodium pyrophosphate (), among others. Often pyrophosphates a ...
act as the leaving group, leaving a single phosphate group linking deoxyribose sugars. PAR is synthesized using
nicotinamide Nicotinamide (International nonproprietary name, INN, British Approved Name, BAN ) or niacinamide (United States Adopted Name, USAN ) is a form of vitamin B3, vitamin B3 found in food and used as a dietary supplement and medication. As a suppl ...
(NAM) as the leaving group. This leaves a pyrophosphate as the linking group between ribose sugars rather than single phosphate groups. This creates some special bulk to a PAR bridge, which may have an additional role in cell signaling.


Role in repairing DNA nicks

One important function of PARP is assisting in the repair of single-strand DNA nicks. It binds sites with single-strand breaks through its N-terminal
zinc finger A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) which stabilizes the fold. The term ''zinc finger'' was originally coined to describe the finger-like appearance of a ...
s and will recruit XRCC1, DNA ligase III,
DNA polymerase A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
beta, and a kinase to the nick. This is called '' base excision repair'' (BER). PARP-2 has been shown to oligomerize with PARP-1 and, therefore, is also implicated in BER. The oligomerization has also been shown to stimulate PARP catalytic activity. PARP-1 is also known for its role in transcription through remodeling of
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important r ...
by PARylating histones and relaxing chromatin structure, thus allowing transcription complex to access genes. PARP-1 and PARP-2 are activated by DNA single-strand breaks, and both PARP-1 and PARP-2 knockout mice have severe deficiencies in DNA repair, and increased sensitivity to alkylating agents or ionizing radiation.


PARP activity and lifespan

PARP activity (which is mainly due to PARP1) measured in the permeabilized mononuclear
leukocyte White blood cells (scientific name leukocytes), also called immune cells or immunocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign entities. White blood cells are genera ...
blood cells of thirteen mammalian species (rat, guinea pig, rabbit, marmoset, sheep, pig, cattle, pigmy chimpanzee, horse, donkey, gorilla, elephant and man) correlates with maximum lifespan of the species. The difference in activity between the longest-lived (humans) and shortest-lived (rat) species tested was 5-fold. Although the
enzyme kinetics Enzyme kinetics is the study of the rates of enzyme catalysis, enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme' ...
(unimolecular rate constant (kcat), Km and kcat/km) of the two enzymes were not significantly different, human PARP-1 was found to have a two-fold higher specific automodification capacity than the rat enzyme, which the authors posited could account, in part, for the higher PARP activity in humans than rats. Lymphoblastoid cell lines established from blood samples of humans who were centenarians (100 years old or older) have significantly higher PARP activity than cell lines from younger (20 to 70 years old) individuals, again indicating a linkage between longevity and repair capability. These findings suggest that PARP-mediated DNA repair capability contributes to mammalian longevity. Thus, these findings support the
DNA damage theory of aging The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of DNA damage (naturally occurring), naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although ...
, which assumes that un-repaired DNA damage is the underlying cause of aging, and that DNA repair capability contributes to longevity.


Role of tankyrases

The tankyrases (TNKs) are PARPs that comprise ankyrin repeats, an oligomerization domain (SAM), and a ''PARP catalytic domain'' (PCD). Tankyrases are also known as PARP-5a and PARP-5b. They were named for their interaction with the
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see #Sequences, Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes. In ...
-associated TERF1 proteins and ankyrin repeats. They may allow the removal of telomerase-inhibiting complexes from chromosome ends to allow for telomere maintenance. Through their SAM domain and ANKs, they can oligomerize and interact with many other proteins, such as TRF1, TAB182 ('' TNKS1BP1''), '' GRB14'', IRAP, NuMa, EBNA-1, and Mcl-1. They have multiple roles in the cell, like vesicular trafficking through its interaction in GLUT4 vesicles with insulin-responsive aminopeptidase (IRAP). It also plays a role in
mitotic spindle In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a process ...
assembly through its interaction with '' nuclear mitotic apparatus protein 1'' (NuMa), therefore allowing the necessary bipolar orientation. In the absence of TNKs,
mitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...
arrest is observed in pre-
anaphase Anaphase () is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maxim ...
through Mad2 spindle checkpoint. TNKs can also PARsylate Mcl-1L and Mcl-1S and inhibit both their pro- and anti-apoptotic function; relevance of this is not yet known.


Role in cell death

PARP can be activated in cells experiencing stress and/or DNA damage. Activated PARP can deplete the cell of ATP in an attempt to repair the damaged DNA. ATP depletion in a cell leads to lysis and cell death (necrosis). PARP also has the ability to induce programmed cell death, via the production of PAR, which stimulates mitochondria to release AIF. This mechanism appears to be caspase-independent. Cleavage of PARP, by enzymes such as caspases or cathepsins, typically inactivates PARP. The size of the cleavage fragments can give insight into which enzyme was responsible for the cleavage and can be useful in determining which cell death pathway has been activated.


Role in epigenetic DNA modification

CCCTC-binding factor ( CTCF) induces PAR accumulation. ADP-ribose polymers, either free or PARP1 bound, are able to inhibit DNA methyltransferase activity at CpG sites. Thus, CTCF is involved in the cross-talk between poly(ADP-ribosyl)ation and DNA methylation, an important epigenetic regulatory factor.


Therapeutic inhibition

A substantial body of preclinical and clinical data has accumulated with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and leading to the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors of various types (e.g. olaparib) for BRCA mutant breast and ovarian cancers can extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. There are several additional classes of novel PARP inhibitors that are in various stages of clinical development. Another substantial body of data relates to the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock, and acute myocardial infarction), PARP inhibitors exert therapeutic benefit (e.g. reduction of infarct size or improvement of organ function). There are also observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, in a process called "therapeutic repurposing".


Inactivation

PARP is inactivated by caspase cleavage. It is believed that normal inactivation occurs in systems where DNA damage is extensive. In these cases, more energy would be invested in repairing damage than is feasible, so that energy is instead retrieved for other cells in the tissue through programmed cell death. Besides degradation, there is recent evidence about reversible downregulation mechanisms for PARP, among these an "autoregulatory loop", which is driven by PARP1 itself and modulated by the YY1 transcription factor. While
in vitro ''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
cleavage by caspase occurs throughout the caspase family, preliminary data suggest that caspase-3 and caspase-7 are responsible for
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, an ...
cleavage. Cleavage occurs at
aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of protei ...
214 and
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (G ...
215, separating PARP into a 24  kDa and 89 kDa segment. The smaller moiety includes the zinc finger motif requisite in DNA binding. The 89 kDa fragment includes the auto-modification domain and catalytic domain. The putative mechanism of PCD activation via PARP inactivation relies on the separation of the DNA-binding region and the auto-modification domain. The DNA-binding region is capable of doing so independent of the rest of the protein, cleaved or not. It is unable, however, to dissociate without the auto-modification domain. In this way, the DNA-binding domain will attach to a damaged site and be unable to effect repair, as it no longer has the catalytic domain. The DNA-binding domain prevents other, non-cleaved PARP from accessing the damaged site and initiating repairs. This model suggests that this "sugar plug" can also begin the signal for apoptosis.


Plant PARPs

Roles of poly(ADP-ribosyl)ation in plant responses to DNA damage, infection, and other stresses have been studied. Plant PARP1 is very similar to animal PARP1, but intriguingly, in ''Arabidopsis thaliana'' and presumably other plants, PARP2 plays more significant roles than PARP1 in protective responses to DNA damage and bacterial pathogenesis. The plant PARP2 carries PARP regulatory and catalytic domains with only intermediate similarity to PARP1, and it carries N-terminal SAP DNA binding motifs rather than the zinc finger DNA binding motifs of plant and animal PARP1 proteins.


See also

*
DNA damage theory of aging The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of DNA damage (naturally occurring), naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although ...
* Maximum life span * PARP1 * PARP inhibitor class of anti-cancer agents * Parthanatos *
Senescence Senescence () or biological aging is the gradual deterioration of Function (biology), functional characteristics in living organisms. Whole organism senescence involves an increase in mortality rate, death rates or a decrease in fecundity with ...


References


External links


Entry for a PARP immunoassay
at bioreagents.com
PARP - Poly (ADP-ribose) polymerase
at inotekcorp.com

at parplink.u-strasbg.fr *
Parp Inhibitors
Information Site
PARP Activity and Inhibition Assays
at trevigen.com {{Portal bar, Biology, border=no Programmed cell death DNA repair EC 2.4.2